Advances in f-element cyanide chemistry.

This Dalton perspective gives an overview of the development of cyanide chemistry of 4f- and 5f-elements, a field which was poorly explored in contrast to the attention paid to the cyanide complexes of the d transition metals. The use of the cyanide ligand led to the discovery of mono- and polycyanide complexes which exhibit unprecedented and unexpected coordination geometries. A new type of linear metallocenes including [U(Cp*)2(CN)5](3-) (Cp* = C5Me5) and the first bent actinocenes [An(Cot)2(CN)](-) (An = Th, U; Cot = C8H8) were isolated. Thorocene was found to be much more reactive than uranocene since a series of sterically crowded cyanide complexes have been obtained only from [Th(Cot)2]. A series of cyanido-bridged dinuclear compounds and mononuclear mono-, bis- and tris(cyanide) complexes were prepared by addition of cyanide salts to [MN*3] (M = Ce, U) and [UN*3](+) [N* = N(SiMe3)2]. The Ce(III), U(III) and U(IV) ions were clearly differentiated in these reactions by cyanide linkage isomerism, as shown for example by the structures of the cyanide complex [U(III)N*3(CN)2](2-) and of the isocyanide derivatives [Ce(III)N*3(NC)2](2-) and [U(IV)N*3(NC)](-). While the U-CN/NC coordination preference towards the U(III)/U(IV) pair is related to the subtle balance between steric, covalent and ionic factors, DFT computations and in particular the calculated total bonding energies between the metal and the cyanide ligand allowed the observed coordination mode to be predicted. The ability of the cyanide ligand to stabilize the high oxidation states was assessed with the synthesis of U(V) and U(VI) complexes in the inorganic and organometallic series.

[1]  D. Dixon,et al.  Reactions of laser-ablated U atoms with (CN)2: infrared spectra and electronic structure calculations of UNC, U(NC)2, and U(NC)4 in solid argon. , 2015, Chemical communications.

[2]  M. Ephritikhine,et al.  U(III)-CN versus U(IV)-NC coordination in tris(silylamide) complexes. , 2015, Inorganic chemistry.

[3]  M. Ephritikhine,et al.  U-CN versus Ce-NC coordination in trivalent complexes derived from M[N(SiMe3)2]3 (M = Ce, U). , 2014, Inorganic chemistry.

[4]  P. Carroll,et al.  The inverse trans influence in a family of pentavalent uranium complexes. , 2014, Inorganic chemistry.

[5]  M. Ephritikhine,et al.  Thorocene adducts of the neutral 2,2′-bipyridine and its radical anion. Synthesis and crystal structures of [Th(η8-C8H8)2(κ2-bipy)] and [Th(μ-η8:η5-C8H8)2(κ2-bipy)K(py)2]∞ , 2014 .

[6]  M. Ephritikhine,et al.  Structural Diversity in Cyanido Thorocene Complexes , 2014 .

[7]  S. Liddle,et al.  Small‐Molecule Activation at Uranium(III) , 2013 .

[8]  M. Ephritikhine,et al.  Revisiting the chemistry of the actinocenes [(η8-C8H8)2An] (An = U, Th) with neutral Lewis bases. Access to the bent sandwich complexes [(η8-C8H8)2An(L)] with thorium (L = py, 4,4'-bipy, tBuNC, R4phen). , 2013, Journal of the American Chemical Society.

[9]  M. Ephritikhine,et al.  Bent thorocene complexes with the cyanide, azide and hydride ligands. , 2013, Chemical communications.

[10]  M. Ephritikhine Recent Advances in Organoactinide Chemistry As Exemplified by Cyclopentadienyl Compounds , 2013 .

[11]  T. Hayton Recent developments in actinide-ligand multiple bonding. , 2013, Chemical communications.

[12]  A. Gaunt,et al.  Recent developments in synthesis and structural chemistry of nonaqueous actinide complexes. , 2013, Chemical reviews.

[13]  R. Baker,et al.  New reactivity of the uranyl(VI) ion. , 2012, Chemistry.

[14]  R. Baker,et al.  The coordination and organometallic chemistry of UI3 and U{N(SiMe3)2}3: Synthetic reagents par excellence , 2012 .

[15]  M. Ephritikhine,et al.  Coordination of 1,10-phenanthroline, 3,4,7,8-tetramethyl-1,10-phenanthroline and 2,4,6-tris(2-pyridyl)-1,3,5-triazine to MX3 (M = Ce, U; X = I, OSO2CF3) in pyridine and acetonitrile , 2012 .

[16]  Wei Huang,et al.  Dicyanometalate chemistry: A type of versatile building block for the construction of cyanide-bridged molecular architectures , 2012 .

[17]  L. Andrews,et al.  Infrared Spectra of the η2-M(NC)-CH3, CH3-MNC, and CH2═M(H)NC Complexes Prepared by Reactions of Thorium and Uranium Atoms with Acetonitrile , 2012 .

[18]  K. Meyer,et al.  Uranium-mediated carbon dioxide activation and functionalization , 2012 .

[19]  M. Ephritikhine,et al.  Iodide, azide, and cyanide complexes of (N,C), (N,N), and (N,O) metallacycles of tetra- and pentavalent uranium. , 2011, Inorganic chemistry.

[20]  Marc D. Walter,et al.  Thorium oxo and sulfido metallocenes: synthesis, structure, reactivity, and computational studies. , 2011, Journal of the American Chemical Society.

[21]  S. Conradson,et al.  Local Structure in Americium and Californium Hexacyanoferrates – Comparison with Their Lanthanide Analogues , 2011 .

[22]  Luís D. Carlos,et al.  Luminescent multifunctional lanthanides-based metal-organic frameworks. , 2011, Chemical Society reviews.

[23]  J. Dognon,et al.  Theoretical study of the bent U(η8-C8H8)2(CN)− complex , 2011 .

[24]  B. Scott,et al.  Organometallic uranium(IV) fluoride complexes: preparation using protonolysis chemistry and reactivity with trimethylsilyl reagents. , 2010, Dalton transactions.

[25]  M. Ephritikhine,et al.  Linear uranium metallocenes with polydentate aromatic nitrogen ligands. , 2010, Dalton transactions.

[26]  J. Mague,et al.  Actinide tetracyanoplatinates: synthesis and structural characterization with uncharacteristic Th-NC coordination and thorium fluorescence. , 2010, Chemical communications.

[27]  M. Ephritikhine,et al.  Density functional theory investigations of the homoleptic tris(dithiolene) complexes [M(dddt)(3)](-q) (q = 3, 2 ; M = Nd(3+) and U(3+/4+)) related to lanthanide(III)/actinide(III) differentiation. , 2010, Inorganic Chemistry.

[28]  J. Ziller,et al.  Lanthanide versus actinide reactivity in the formation of sterically crowded [(C(5)Me(5))(3)ML(n)] nitrile and isocyanide complexes. , 2010, Chemistry.

[29]  C. Anthon,et al.  Influence of steric pressure on the activation of carbon dioxide and related small molecules by uranium coordination complexes. , 2009, Dalton transactions.

[30]  P. Redondo,et al.  Cyanide complexes of Ti(IV): a computational study. , 2009, Journal of Chemical Physics.

[31]  S. Liddle,et al.  Metal-metal bonds in f-element chemistry. , 2009, Dalton transactions.

[32]  M. Ephritikhine,et al.  Synthesis and crystal structure of pentavalent uranyl complexes. The remarkable stability of U O2X (X = I, SO3CF3) in non-aqueous solutions. , 2009, Dalton transactions.

[33]  G. Deacon,et al.  Accessing decaphenylmetallocenes of ytterbium, calcium, and barium by desolvation of solvent-separated ion pairs: overcoming adverse solubility properties , 2008 .

[34]  M. Ephritikhine,et al.  Bending of “Uranocene” ((η8-C8H8)2U): Synthesis and Crystal Structure of the Cyanido Complex [(η8-C8H8)2U(CN)][NEt4] , 2008 .

[35]  L. Maron,et al.  Linear uranium complexes X2UL5 with L=cyanide, isocyanate: DFT evidence for similarities between uranyl (X=O) and uranocene (X=Cp) derivatives. , 2008, Chemistry.

[36]  L. Carlos,et al.  A Luminescent and magnetic cyano-bridged Tb3+-Mo5+ coordination polymer: toward multifunctional materials. , 2008, Inorganic chemistry.

[37]  M. Ephritikhine,et al.  Bent and Linear Uranium(IV) Metallocenes with Terminal and Bridging Cyanide Ligands , 2007 .

[38]  J. Ziller,et al.  Reactivity of (C5Me5)2Sm(THF)2with Nitriles: C−C Bond Cleavage To Form Cyanide Complexes , 2007 .

[39]  R. Denning Electronic structure and bonding in actinyl ions and their analogs. , 2007, The journal of physical chemistry. A.

[40]  M. Ephritikhine,et al.  Cyanide Metallocenes of Trivalent f-Elements , 2007 .

[41]  M. Ephritikhine,et al.  The crucial role of the f electrons in the bent or linear configuration of uranium cyanido metallocenes. , 2007, Angewandte Chemie.

[42]  M. Ephritikhine,et al.  The first actinyl cyanide. , 2007, Chemical Communications.

[43]  M. Ephritikhine,et al.  The first cyclopentadienyl complex of uranyl. , 2007, Chemical communications.

[44]  M. Ephritikhine,et al.  From Bent to Linear Uranium Metallocenes: Influence of Counterion, Solvent, and Metal Ion Oxidation State , 2006 .

[45]  S. Tanase,et al.  Chemistry and magnetism of cyanido-bridged d–f assemblies , 2006 .

[46]  R. Podgajny,et al.  Supramolecular coordination networks based on octacyanometalates: From structure to function , 2006 .

[47]  M. Ephritikhine The vitality of uranium molecular chemistry at the dawn of the XXIst century. , 2006, Dalton transactions.

[48]  T. Mak,et al.  Two Novel 5f–3d Bimetallic Cyano‐Bridged Complexes , 2006 .

[49]  M. Ephritikhine,et al.  An unprecedented type of linear metallocene with an f-element. , 2006, Journal of the American Chemical Society.

[50]  Marc D. Walter,et al.  Preparation and Reactions of Base-Free Bis(1,2,4-tri-tert-butylcyclopentadienyl)uranium Oxide, Cp‘2UO , 2005 .

[51]  P. Hay,et al.  Theoretical investigations of uranyl-ligand bonding: four- and five-coordinate uranyl cyanide, isocyanide, carbonyl, and hydroxide complexes. , 2005, Inorganic chemistry.

[52]  P. Mayer,et al.  First structurally characterized actinide isocyanates. , 2004, Inorganic chemistry.

[53]  Thomas J. Meyer,et al.  Comprehensive Coordination Chemistry II , 2004 .

[54]  J. Ziller,et al.  Comparative reactivity of sterically crowded nf3 (C5Me5)3Nd and (C5Me5)3U complexes with CO: formation of a nonclassical carbonium ion versus an f element metal carbonyl complex. , 2003, Journal of the American Chemical Society.

[55]  L. Ricard,et al.  Structure and reactivity of homoleptic samarium(II) and thulium(II) phospholyl complexes. , 2003, Chemistry.

[56]  C. Marsden,et al.  Modeling complexes of the uranyl ion UO2L2n+: Binding energies, geometries, and bonding analysis , 2003 .

[57]  M. Straka,et al.  Why are hexavalent uranium cyanides rare while U–F and U–O bonds are common and short? , 2003 .

[58]  Dante Gatteschi,et al.  Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. , 2002, Chemical reviews.

[59]  H. Sitzmann,et al.  Metallocenes of Samarium, Europium, and Ytterbium with the Especially Bulky Cyclopentadienyl Ligands C5H(CHMe2)4, C5H2(CMe3)3, and C5(CHMe2)5 , 2000 .

[60]  C. Auwer,et al.  Molecular and electronic structure of AnIVFeII(CN)6·xH2O (An = Th, U, Np) compounds: an X-ray absorption spectroscopy investigation , 2000 .

[61]  M. Ohba,et al.  Synthesis and magnetism of multi-dimensional cyanide-bridged bimetallic assemblies , 2000 .

[62]  R. Rogers,et al.  Carbon monoxide and isocyanide complexes of trivalent uranium metallocenes , 1999 .

[63]  V. Marvaud,et al.  MOLECULES TO BUILD SOLIDS : HIGH TC MOLECULE-BASED MAGNETS BY DESIGN AND RECENT REVIVAL OF CYANO COMPLEXES CHEMISTRY , 1999 .

[64]  J. Ziller,et al.  Reaction Chemistry of Sterically Crowded Tris(pentamethylcyclopentadienyl)samarium1 , 1998 .

[65]  S. Shore,et al.  Heterometallic One-Dimensional Arrays Containing Cyanide-Bridged Lanthanide(III) and Transition Metals. , 1998, Inorganic chemistry.

[66]  Wenjian Liu,et al.  CALCULATED PROPERTIES OF LANTHANOCENE ANIONS AND THE UNUSUAL ELECTRONIC STRUCTURE OF THEIR NEUTRAL COUNTERPARTS , 1998 .

[67]  T. Marks,et al.  Organolanthanide-Catalyzed Imine Hydrogenation. Scope, Selectivity, Mechanistic Observations, and Unusual Byproducts , 1997 .

[68]  S. Coles,et al.  Synthesis and Single Crystal X-ray Diffraction Study on the First Isolable Carbonyl Complex of an Actinide, (C5Me4H)3U(CO) , 1995 .

[69]  M. Ephritikhine,et al.  Synthesis, structure and oxidative addition reactions of triscyclopentadienyluranium(III) nitrile complexes , 1993 .

[70]  J. Ziller,et al.  The utility of ceric ammonium nitrate-derived alkoxide complexes in the synthesis of organometallic cerium(IV) complexes. Synthesis and first x-ray crystallographic determination of a tetravalent cerium cyclopentadienide complex, (C5H5)3Ce(OCMe3) , 1989 .

[71]  W. Evans,et al.  Reactivity of isocyanides with (C5Me5)2Sm(THF)2: synthesis and structure of trimeric [(C5Me5)2Sm(CNC6H11)(.mu.-CN)]3 , 1988 .

[72]  K. W. Bagnall,et al.  Anionic tris(cyclopentadienyl)actinide(IV) complexes , 1983 .

[73]  A. Streitwieser,et al.  Synthesis and properties of substituted thorocenes , 1981 .

[74]  W. Griffith Cyanide complexes of the early transition metals (groups IVa-VIIa) , 1975 .

[75]  B. Kanellakopulos,et al.  Cyanidhaltige metallorganische cyclopentadienylver bindungen der lanthanoide und actinoide , 1974 .

[76]  P. Rigo,et al.  Cyanide phosphine complexes of transition metals , 1974 .

[77]  I. J. Mccolm,et al.  The preparation of anhydrous lanthanide cyanides , 1972 .

[78]  R. Multani,et al.  Pseudohalide complexes of tricyclopentadienyl cerium(IV) and bisindenyl cerium(IV) , 1972 .

[79]  K. W. Bagnall,et al.  A uranium(IV) chlorocyanide complex , 1970 .

[80]  A. Streitwieser,et al.  Bis(cyclooctatetraenyl)uranium (uranocene). A new class of sandwich complexes that utilize atomic f orbitals , 1968 .

[81]  H. Vahrenkamp,et al.  Cyanide-bridged oligonuclear complexes: features and attractions† , 1997 .

[82]  C. Boisson,et al.  Monocyclooctatetraene uranium amide compounds in the +4 and +5 oxidation states , 1996 .

[83]  R. Denning Electronic structure and bonding in actinyl ions , 1992 .

[84]  K. W. Bagnall,et al.  484. The magnetic and spectral properties of some uranium(IV) complexes , 1964 .

[85]  W. Griffith Cyanide complexes of the transition metals , 1962 .