Analysis of subpocket selectivity and identification of potent selective inhibitors for matriptase and matriptase-2.

We studied the factors affecting the selectivity of peptidomimetic inhibitors of the highly homologous proteases matriptase and matriptase-2 across subpockets using docking simulations. We observed that the farther away a subpocket is located from the catalytic site, the more pronounced its role in selectivity. As a result of our exhaustive virtual screening, we biochemically validated novel potent and selective inhibitors of both enzymes.

[1]  T. Bugge,et al.  Type II Transmembrane Serine Proteases* , 2009, The Journal of Biological Chemistry.

[2]  H. Kolmar,et al.  Combinatorial tuning of peptidic drug candidates: high-affinity matriptase inhibitors through incremental structure-guided optimization. , 2013, Organic & biomolecular chemistry.

[3]  Rafael Najmanovich,et al.  FlexAID: Revisiting Docking on Non-Native-Complex Structures , 2015, J. Chem. Inf. Model..

[4]  Gloria Velasco,et al.  Matriptase-2 (TMPRSS6): a proteolytic regulator of iron homeostasis , 2009, Haematologica.

[5]  S. Leung,et al.  Ovarian Carcinoma Subtypes Are Different Diseases: Implications for Biomarker Studies , 2008, PLoS medicine.

[6]  David P. Anderson,et al.  BOINC: a system for public-resource computing and storage , 2004, Fifth IEEE/ACM International Workshop on Grid Computing.

[7]  J. Morrison,et al.  [17] The kinetics of reversible tight-binding inhibition , 1979 .

[8]  Nir London,et al.  Covalent Docking of Large Libraries for the Discovery of Chemical Probes , 2014, Nature chemical biology.

[9]  C. Craik,et al.  Engineering of a macromolecular scaffold to develop specific protease inhibitors , 2003, Nature Biotechnology.

[10]  Rafael Najmanovich,et al.  Side-chain rotamer changes upon ligand binding: common, crucial, correlate with entropy and rearrange hydrogen bonding , 2012, Bioinform..

[11]  R. Dickson,et al.  Matriptase activates stromelysin (MMP‐3) and promotes tumor growth and angiogenesis , 2006, Cancer science.

[12]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[13]  C. Beaumont,et al.  Molecular mechanisms of the defective hepcidin inhibition in TMPRSS6 mutations associated with iron-refractory iron deficiency anemia. , 2009, Blood.

[14]  Xiaoqin Zou,et al.  Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. , 2010, Physical chemistry chemical physics : PCCP.

[15]  Jerry Kaplan,et al.  The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. , 2008, Cell metabolism.

[16]  Wim F Vranken,et al.  ACPYPE - AnteChamber PYthon Parser interfacE , 2012, BMC Research Notes.

[17]  J. Bajorath,et al.  Identification of the first low-molecular-weight inhibitors of matriptase-2. , 2010, Journal of medicinal chemistry.

[18]  J. Gasteiger,et al.  ITERATIVE PARTIAL EQUALIZATION OF ORBITAL ELECTRONEGATIVITY – A RAPID ACCESS TO ATOMIC CHARGES , 1980 .

[19]  J. Bajorath,et al.  Insights into Matriptase‐2 Substrate Binding and Inhibition Mechanisms by Analyzing Active‐Site‐Mutated Variants , 2012, ChemMedChem.

[20]  A. Molinolo,et al.  Epithelial and Mesenchymal Cell Biology Epithelial Integrity Is Maintained by a Matriptase-Dependent Proteolytic Pathway , 2010 .

[21]  M. Page,et al.  Serine peptidases: Classification, structure and function , 2008, Cellular and Molecular Life Sciences.

[22]  R. Dickson,et al.  The Activation of Matriptase Requires Its Noncatalytic Domains, Serine Protease Domain, and Its Cognate Inhibitor* , 2003, Journal of Biological Chemistry.

[23]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[24]  Y. Guan,et al.  Matriptase, HAT, and TMPRSS2 Activate the Hemagglutinin of H9N2 Influenza A Viruses , 2012, Journal of Virology.

[25]  R. Leduc,et al.  Probing the substrate specificities of matriptase, matriptase‐2, hepsin and DESC1 with internally quenched fluorescent peptides , 2009, The FEBS journal.

[26]  M. Kew Hepatic Iron Overload and Hepatocellular Carcinoma , 2014, Liver Cancer.

[27]  E. Fearon,et al.  Cancer progression , 1999, Current Biology.

[28]  Tingjun Hou,et al.  Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations , 2011, J. Chem. Inf. Model..

[29]  W. Ferrell,et al.  Matriptase is a novel initiator of cartilage matrix degradation in osteoarthritis. , 2010, Arthritis and rheumatism.

[30]  A. Sali,et al.  Statistical potential for assessment and prediction of protein structures , 2006, Protein science : a publication of the Protein Society.

[31]  Alex Bateman,et al.  MEROPS: the database of proteolytic enzymes, their substrates and inhibitors , 2011, Nucleic Acids Res..

[32]  R. Leduc,et al.  Matriptase Proteolytically Activates Influenza Virus and Promotes Multicycle Replication in the Human Airway Epithelium , 2013, Journal of Virology.

[33]  B. Beutler,et al.  The Serine Protease TMPRSS6 Is Required to Sense Iron Deficiency , 2008, Science.

[34]  E. Stupka,et al.  A Strong Anti-Inflammatory Signature Revealed by Liver Transcription Profiling of Tmprss6−/− Mice , 2013, PloS one.

[35]  Klaus R. Liedl,et al.  Cleavage Entropy as Quantitative Measure of Protease Specificity , 2013, PLoS Comput. Biol..

[36]  M. Gütschow,et al.  Hepatocyte growth factor activator inhibitor type 2 (HAI-2) modulates hepcidin expression by inhibiting the cell surface protease matriptase-2. , 2013, The Biochemical journal.

[37]  G. Whittaker,et al.  Cleavage Activation of the Human-Adapted Influenza Virus Subtypes by Matriptase Reveals both Subtype and Strain Specificities , 2012, Journal of Virology.

[38]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[39]  Patricia Andrade-Gordon,et al.  In-depth study of tripeptide-based alpha-ketoheterocycles as inhibitors of thrombin. Effective utilization of the S1' subsite and its implications to structure-based drug design. , 2005, Journal of medicinal chemistry.

[40]  P. Feng,et al.  N-Glycosylation Is Required for Matriptase-2 Autoactivation and Ectodomain Shedding* , 2014, The Journal of Biological Chemistry.

[41]  D. Craik,et al.  High-affinity Cyclic Peptide Matriptase Inhibitors* , 2013, The Journal of Biological Chemistry.

[42]  R. Najmanovich,et al.  Design and synthesis of potent, selective inhibitors of matriptase. , 2012, ACS medicinal chemistry letters.

[43]  J. Bajorath,et al.  Substrate specificity of human matriptase-2. , 2014, Biochimie.

[44]  M. Indelman,et al.  Autosomal recessive ichthyosis with hypotrichosis caused by a mutation in ST14, encoding type II transmembrane serine protease matriptase. , 2007, American journal of human genetics.

[45]  T. Ikonen,et al.  Structure-guided discovery of 1,3,5 tri-substituted benzenes as potent and selective matriptase inhibitors exhibiting in vivo antitumor efficacy. , 2014, Bioorganic & medicinal chemistry.

[46]  Tingjun Hou,et al.  Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking , 2011, J. Comput. Chem..

[47]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using Modeller , 2006, Current protocols in bioinformatics.

[48]  N. Andrews,et al.  Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA) , 2008, Nature Genetics.

[49]  S. Wahl,et al.  Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis , 2002, Oncogene.

[50]  Christopher Bergum,et al.  Loss of the matriptase inhibitor HAI‐2 during prostate cancer progression , 2010, The Prostate.

[51]  J. P. Hobson,et al.  Regulation of cell surface protease matriptase by HAI2 is essential for placental development, neural tube closure and embryonic survival in mice , 2009, Development.

[52]  R. Leduc,et al.  Inhibition of human matriptase by eglin c variants , 2006, FEBS letters.

[53]  Olivier Barré,et al.  Cleavage Specificity Analysis of Six Type II Transmembrane Serine Proteases (TTSPs) Using PICS with Proteome-Derived Peptide Libraries , 2014, PloS one.

[54]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[55]  D. Agus,et al.  CVS‐3983, a selective matriptase inhibitor, suppresses the growth of androgen independent prostate tumor xenografts , 2004, The Prostate.

[56]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[57]  J F Morrison,et al.  The kinetics of reversible tight-binding inhibition. , 1979, Methods in enzymology.