Assessment of Subcortical Source Localization Using Deep Brain Activity Imaging Model with Minimum Norm Operators: A MEG Study

Subcortical structures are involved in many healthy and pathological brain processes. It is crucial for many studies to use magnetoencephalography (MEG) to assess the ability to detect subcortical generators. This study aims to assess the source localization accuracy and to compare the characteristics of three inverse operators in the specific case of subcortical generators. MEG has a low sensitivity to subcortical sources mainly because of their distance from sensors and their complex cyto-architecture. However, we show that using a realistic anatomical and electrophysiological model of deep brain activity (DBA), the sources make measurable contributions to MEG sensors signals. Furthermore, we study the point-spread and cross-talk functions of the wMNE, sLORETA and dSPM inverse operators to characterize distortions in cortical and subcortical regions and to study how noise-normalization methods can improve or bias accuracy. We then run Monte Carlo simulations with neocortical and subcortical activations. In the case of single hippocampus patch activations, the results indicate that MEG can indeed localize the generators in the head and the body of the hippocampus with good accuracy. We then tackle the question of simultaneous cortical and subcortical activations. wMNE can detect hippocampal activations that are embedded in cortical activations that have less than double their amplitude, but it does not completely correct the bias to more superficial sources. dSPM and sLORETA can still detect hippocampal activity above this threshold, but such detection might include the creation of ghost deeper sources. Finally, using the DBA model, we showed that the detection of weak thalamic modulations of ongoing brain activity is possible.

[1]  R. Lorente de Nó,et al.  Action potential of the motoneurons of the hypoglossus nucleus. , 1947, Journal of cellular and comparative physiology.

[2]  F. D. da Silva,et al.  Organization of thalamic and cortical alpha rhythms: spectra and coherences. , 1973, Electroencephalography and clinical neurophysiology.

[3]  G. Percheron,et al.  A Golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic arborizations , 1984, The Journal of comparative neurology.

[4]  Geophysical data analysis: Discrete inverse theory: William Menke. Academic Press Inc., Florida, 1984, xii + 260 pp., US$ 42.50/£30.00, (hardcover) , 1986 .

[5]  K. D. Singh,et al.  Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Jérôme Yelnik,et al.  Morphological taxonomy of the neurons of the primate striatum , 1991, The Journal of comparative neurology.

[7]  MEG and EEG in epilepsy: is there a difference? , 1993, Physiological measurement.

[8]  C. Tesche,et al.  Non-invasive imaging of neuronal population dynamics in human thalamus , 1996, Brain Research.

[9]  Y. Okada,et al.  Genesis of MEG signals in a mammalian CNS structure. , 1997, Electroencephalography and clinical neurophysiology.

[10]  C. Michel,et al.  Linear inverse solutions with optimal resolution kernels applied to electromagnetic tomography , 1997, Human brain mapping.

[11]  H. Duvernoy,et al.  The Human Hippocampus: Functional Anatomy, Vascularization and Serial Sections with MRI , 1997 .

[12]  Hiroshi Shibasaki,et al.  Simultaneous Recording of Epileptiform Discharges by MEG and Subdural Electrodes in Temporal Lobe Epilepsy , 1997, NeuroImage.

[13]  A K Liu,et al.  Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Bruce J. Fisch,et al.  Fisch and Spehlmann's Eeg Primer: Basic Principles of Digital and Analog Eeg , 1999 .

[15]  R M Leahy,et al.  A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. , 1999, Physics in medicine and biology.

[16]  M. Fuchs,et al.  Linear and nonlinear current density reconstructions. , 1999, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[17]  E. Halgren,et al.  Dynamic Statistical Parametric Mapping Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000, Neuron.

[18]  Michael Davis,et al.  The amygdala , 2000, Current Biology.

[19]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[20]  Karim Jerbi,et al.  Hybrid MEG source characterization by cortical remapping and imaging of parametric source models , 2001 .

[21]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[22]  Olivier David,et al.  Time-Coherent Expansion of MEG/EEG Cortical Sources , 2002, NeuroImage.

[23]  A. Schnitzler,et al.  The neural basis of intermittent motor control in humans , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  John W Belliveau,et al.  Monte Carlo simulation studies of EEG and MEG localization accuracy , 2002, Human brain mapping.

[25]  R D Pascual-Marqui,et al.  Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.

[26]  G. R. Barnes,et al.  A Quantitative Assessment of the Sensitivity of Whole-Head MEG to Activity in the Adult Human Cortex , 2002, NeuroImage.

[27]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[28]  S. Baillet,et al.  Localization of realistic cortical activity in MEG using current multipoles , 2004, NeuroImage.

[29]  J. Stephen,et al.  Differentiability of Simulated MEG Hippocampal, Medial Temporal and Neocortical Temporal Epileptic Spike Activity , 2005, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[30]  H. Berger Über das Elektrenkephalogramm des Menschen , 1938, Archiv für Psychiatrie und Nervenkrankheiten.

[31]  Hans Berger,et al.  Über das Elektrenkephalogramm des Menschen , 1932, Archiv für Psychiatrie und Nervenkrankheiten.

[32]  Jean Gotman,et al.  Evaluation of EEG localization methods using realistic simulations of interictal spikes , 2006, NeuroImage.

[33]  Y. Okada,et al.  Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals , 2006, The Journal of physiology.

[34]  J. Yelnik Anatomie structurale et fonctionnelle des ganglions de la base , 2006 .

[35]  Seppo P. Ahlfors,et al.  Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates , 2006, NeuroImage.

[36]  Sandra N. Moses,et al.  Dynamic neural activity recorded from human amygdala during fear conditioning using magnetoencephalography , 2007, Brain Research Bulletin.

[37]  Dimitrios Pantazis,et al.  Coherent neural representation of hand speed in humans revealed by MEG imaging , 2007, Proceedings of the National Academy of Sciences.

[38]  R. Barry,et al.  EEG differences between eyes-closed and eyes-open resting conditions , 2007, Clinical Neurophysiology.

[39]  M. Corbetta,et al.  Electrophysiological signatures of resting state networks in the human brain , 2007, Proceedings of the National Academy of Sciences.

[40]  Sébastien Ourselin,et al.  A three-dimensional, histological and deformable atlas of the human basal ganglia. I. Atlas construction based on immunohistochemical and MRI data , 2007, NeuroImage.

[41]  Benoit Cottereau,et al.  Multiresolution imaging of MEG cortical sources using an explicit piecewise model , 2007, NeuroImage.

[42]  Dominique Hasboun,et al.  Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: Method and validation on controls and patients with Alzheimer’s disease , 2007, NeuroImage.

[43]  M. S. Hämäläinen,et al.  Quantification of the benefit from integrating MEG and EEG data in minimum ℓ2-norm estimation , 2008, NeuroImage.

[44]  D Rivière,et al.  BrainVISA: an extensible software environment for sharing multimodal neuroimaging data and processing tools , 2009, NeuroImage.

[45]  J. Mäkelä,et al.  Sources of auditory brainstem responses revisited: Contribution by magnetoencephalography , 2009, Human brain mapping.

[46]  Brian B. Avants,et al.  A high-resolution computational atlas of the human hippocampus from postmortem magnetic resonance imaging at 9.4 T , 2009, NeuroImage.

[47]  J. Yelnik,et al.  Modelling and detecting deep brain activity with MEG and EEG , 2009 .

[48]  Polina Golland,et al.  Automated segmentation of hippocampal subfields from ultra‐high resolution in vivo MRI , 2009, Hippocampus.

[49]  Lily Riggs,et al.  A complementary analytic approach to examining medial temporal lobe sources using magnetoencephalography , 2009, NeuroImage.

[50]  D. Wipf,et al.  Neuroelectromagnetic Source Imaging of Brain Dynamics , 2010 .

[51]  M. Trimble,et al.  The Human Amygdala , 2010 .

[52]  Yohan Attal,et al.  Detection of activity from the amygdala with magnetoencephalography , 2011 .

[53]  Moritz Grosse-Wentrup,et al.  Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI , 2011, Comput. Intell. Neurosci..

[54]  Margot J. Taylor,et al.  Detection and localization of hippocampal activity using beamformers with MEG: A detailed investigation using simulations and empirical data , 2011, Human brain mapping.

[55]  A. Friederici,et al.  Dynamic Causal Modeling of Subcortical Connectivity of Language , 2011, The Journal of Neuroscience.

[56]  Karl J. Friston,et al.  Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson's disease. , 2011, Brain : a journal of neurology.

[57]  Richard M. Leahy,et al.  Brainstorm: A User-Friendly Application for MEG/EEG Analysis , 2011, Comput. Intell. Neurosci..

[58]  Olaf Hauk,et al.  Comparison of noise-normalized minimum norm estimates for MEG analysis using multiple resolution metrics , 2011, NeuroImage.

[59]  Christoph Braun,et al.  Can magnetoencephalography track the afferent information flow along white matter thalamo-cortical fibers? , 2012, NeuroImage.

[60]  Sandra N. Moses,et al.  Techniques for Detection and Localization of Weak Hippocampal and Medial Frontal Sources Using Beamformers in MEG , 2012, Brain Topography.

[61]  A. Friederici,et al.  Head models and dynamic causal modeling of subcortical activity using magnetoencephalographic/electroencephalographic data , 2012, Reviews in the neurosciences.