Biogeomorphological implications of microscale interactions between sediment geotechnics and marine benthos: a review

Abstract At the foundations of biogeomorphological processes in the sea lie interactions between the activities of marine benthic animals and the geotechnical properties of their sedimentary environments. The potential significance of these interactions, which take place at a microscale level of millimetres to metres, for the large-scale geomorphology of the seabed has rarely been appreciated. In the context of this review, large-scale is defined as greater than 50 m to hundreds of kilometres. The present review addresses this link, drawing examples from a wide range of marine environments, including estuaries, the intertidal zone, continental shelves and slopes, and the deep sea. It firstly considers sediment stabilisation, slope failure, sediment mixing, biodeposition, sediment compaction, and hydrodynamic effects. This is followed by a consideration of two extremes of the ecological pyramid—the effects of marine meiofauna and marine vertebrates. The final section draws attention to the central role of faunal mucus and extracellular polymeric material (ECPM) in many of the microscale interactions that we describe. The implications of these microscale biological processes and features are discussed in terms of their influence on and control of the large-scale geomorphology of the seabed.

[1]  L. Levin,et al.  Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea , 2000 .

[2]  J. Fleeger,et al.  Tube-building by a marine meiobenthic harpacticoid copepod , 1984 .

[3]  C. Heip,et al.  The influence of Corophium volutator abundance on resuspension , 2000, Hydrobiologia.

[4]  H. Manzenrieder Retardation of Initial Erosion under Biological Effects in Sandy Tidal Flats , 1985 .

[5]  H. Y. Elder Direct Peristaltic Progression and the Functional Significance of the Dermal Connective Tissues During Burrowing in the Polychaete Polyphysia Crassa (Oersted) , 1973 .

[6]  D. Cullen,et al.  Bioturbation of Superficial Marine Sediments by Interstitial Meiobenthos , 1973, Nature.

[7]  M. K. Seymour,et al.  Locomotion and Coelomic Pressure in Lumbricus Terrestris L , 1969 .

[8]  R. Colwell,et al.  Biotechnology of marine polysaccharides , 1985 .

[9]  Peter A. Jumars,et al.  Effects of benthos on sediment transport: difficulties with functional grouping , 1984 .

[10]  Robert A. Dalrymple,et al.  Waves over Soft Muds: A Two-Layer Fluid Model , 1978 .

[11]  Michael Elliott,et al.  Temporal changes in intertidal sediment erodability: influence of biological and climatic factors , 2000 .

[12]  D. Wood,et al.  Microscale biogeotechnical differences in intertidal sedimentary ecosystems , 1998, Geological Society, London, Special Publications.

[13]  D. R. Woods,et al.  Horizontal and vertical distribution of meiofauna in the Venezuela Basin , 1985 .

[14]  John B. Anderson,et al.  Use of total grain-size distributions to define bed erosion and transport for poorly sorted sediment undergoing simulated bioturbation , 1984 .

[15]  J. Price,et al.  The shore environment: 2. Ecosystems , 1980 .

[16]  C. Heip,et al.  Vertical distribution of meiofauna in sediments from contrasting sites in the adriatic sea: Clues to the role of abiotic versus biotic control , 2000 .

[17]  A. Tufail Microbial Aggregates on Sand Grains in Enrichment Media , 1985 .

[18]  B. Swedmark THE INTERSTITIAL FAUNA OF MARINE SAND , 1964 .

[19]  K. Richards,et al.  Uptake and surface adsorption of zinc by the freshwater tubificid oligochaete Tubifex tubifex , 1982 .

[20]  R. Wheatcroft,et al.  Spatial and temporal variability in aggregated grain-size distributions, with implications for sediment dynamics , 1997 .

[21]  D. R. Horn,et al.  Correlation between acoustical and other physical properties of deep‐sea cores , 1968 .

[22]  A. R. Nowell,et al.  Boundary skin friction and sediment transport about an animal-tube mimic , 1984 .

[23]  A. L. Rice,et al.  The feeding behaviour of an abyssal echiuran revealed by in situ time-lapse photography , 1993 .

[24]  P. J. Morgan,et al.  The burrows and burrowing behaviour of Maera loveni (Crustacea: Amphipoda) , 1982 .

[25]  G. Termier,et al.  Erosion And Sedimentation , 1963 .

[26]  J. R. Allen,et al.  Principles of physical sedimentology , 1985 .

[27]  M. Shilo,et al.  Characterization of Macromolecular Flocculants Produced by Phormidium sp. Strain J-1 and by Anabaenopsis circularis PCC 6720 , 1987, Applied and environmental microbiology.

[28]  A. Ansell,et al.  UNDERWATER TELEVISION OBSERVATIONS OF SURFACE-ACTIVITY OF THE ECHIURAN WORM MAXMUELLERIA-LANKESTERI (ECHIURA, BONELLIIDAE) , 1993 .

[29]  D. Cacchione,et al.  Sea-floor gouges caused by migrating gray whales off northern California , 1987 .

[30]  M. Risk,et al.  Effect of tube-building polychaetes on intertidal sediments on the Minas Basin, Bay of Fundy , 1977 .

[31]  R. W. Frey The lebensspuren of some common marine invertebrates near Beaufort, North Carolina; 1, Pelecypod burrows , 1968 .

[32]  D. Carey Particle Resuspension in the Benthic Boundary Layer Induced by Flow around Polychaete Tubes , 1983 .

[33]  Irving S. Dunn,et al.  Fundamentals of Geotechnical Analysis , 1980 .

[34]  C. Grimes,et al.  Temporal and spatial variation in habitat characteristics of Tilefish (Lopholatilus Chamaeleonticeps) off the east coast of Florida , 1993 .

[35]  C. Nelson,et al.  Gray whale and walrus feeding excavation on the Bering Shelf, Alaska , 1987 .

[36]  A. Meadows,et al.  Biological control of avalanching and slope stability in the intertidal zone , 1998, Geological Society, London, Special Publications.

[37]  O. Iribarne,et al.  Contrasting Effects of Two Burrowing Crabs (Chasmagnathus granulata and Uca uruguayensis) on Sediment Composition and Transport in Estuarine Environments , 2000 .

[38]  W. G. Tiederman,et al.  Flow visualization of the near-wall region in a drag-reducing channel flow , 1972, Journal of Fluid Mechanics.

[39]  K. Emery Some Surface Features of Marine Sediments Made by Animals , 1953 .

[40]  G. Almagor,et al.  Analysis of Slope Stability, Wilmington to Lindenkohl Canyons, US Mid-Atlantic Margin , 1984 .

[41]  P. Meadows,et al.  Effects of estuarine infauna on sediment stability and particle sedimentation , 1990, Hydrobiologia.

[42]  D. Kristmanson,et al.  Benthic suspension feeders and flow , 1997 .

[43]  G. Chapman THE HYDROSTATIC SKELETON IN THE INVERTEBRATES , 1958 .

[44]  A. Tufail Microbial communities colonising nutrient-enriched marine sediment , 1987, Hydrobiologia.

[45]  C. Schafer,et al.  Significance of some geotechnical properties of continental slope and rise sediments off northeast Newfoundland , 1982 .

[46]  R. Gehr,et al.  Removal of extracellular material, techniques and pitfalls , 1983 .

[47]  J. Trevor The dynamics and mechanical energy expenditure of the polychaetes Nephtys cirrosa, Nereis diversicolor and Arenicola marina during burrowing , 1978 .

[48]  J. R. Allen Sedimentary structures, their character and physical basis , 1982 .

[49]  D. Gutiérrez,et al.  Effects of dissolved oxygen and fresh organic matter on the bioturbation potential of macrofauna in sublittoral sediments off Central Chile during the 1997/1998 El Niño , 2000 .

[50]  J. Winston,et al.  Bioturbation of sediments in a northern temperate estuary , 1971 .

[51]  Alan G. Davies,et al.  The reflection of wave energy by undulations on the seabed , 1982 .

[52]  B. C. Coull Ecology of marine benthos , 1977 .

[53]  C. Smith,et al.  Burrow morphology of the echiuran worm Maxmuelleria lankesteri (Echiura: Bonelliidae), and a brief review of burrow structure and related ecology of the Echiura , 1995 .

[54]  A. R. Nowell,et al.  Effects of bacterial exopolymer adhesion on the entrainment of sand , 1990 .

[55]  D. Butler Zoogeomorphology: Animals as Geomorphic Agents , 1995 .

[56]  N. Kautsky Role of biodeposition by Mytilus edulis in the ciculation of matter and nutrients in a Baltic coastal ecosystim. , 1987 .

[57]  S. Leroueil,et al.  Strength development with burial in fine-grained sediments from the Saguenay Fjord, Quebec , 1995 .

[58]  T. Fenchel,et al.  Particle size-selection of two deposit feeders: the amphipod Corophium volutator and the prosobranch Hydrobia ulvae , 1975 .

[59]  G. Cadée Sediment reworking by the polychaete heteromastus filiformis on a tidal flat in the Dutch Wadden Sea , 1979 .

[60]  D. Raffaelli,et al.  Interactions Between the Amphipod Corophium Volutator and Macroalgal Mats on Estuarine Mudflats , 1991, Journal of the Marine Biological Association of the United Kingdom.

[61]  P. Kenis Turbulent flow friction reduction effectiveness and hydrodynamic degradation of polysaccharides and synthetic polymers , 1971 .

[62]  R. Bromley Trace Fossils: Biology, Taxonomy and Applications , 1996 .

[63]  A. Fattom,et al.  Phormidium J-1 bioflocculant: production and activity , 1984, Archives of Microbiology.

[64]  D. DeMaster,et al.  A particle introduction experiment in Santa Catalina Basin sediments : Testing the age-dependent mixing hypothesis , 2001 .

[65]  R. W. Frey,et al.  Biodeposition by the ribbed mussel Geukensia demissa in a salt marsh, Sapelo Island, Georgia , 1985 .

[66]  D. Rhoads,et al.  Animal-sediment relations in Cape Cod Bay, Massachusetts I. A transect study , 1971 .

[67]  A. Preen Infaunal Mining: A Novel Foraging Method of Loggerhead Turtles , 1996 .

[68]  M. Fonseca,et al.  A preliminary evaluation of wave attenuation by four species of seagrass , 1992 .

[69]  P. S. Meadows,et al.  Modification of sediment permeability and shear strength by two burrowing invertebrates , 1989 .

[70]  J. H. Trevor,et al.  The burrowing of Nereis diversicolor O.F. Müller, together with some observations on Arenicola marina (L.) (Annelida: Polychaeta) , 1977 .

[71]  H. Reineck,et al.  Depositional sedimentary environments , 1973 .

[72]  T. Loughlin,et al.  Observations of sea otters digging for clams at Monterey Harbor, California , 1980 .

[73]  B. Hecker Possible Benthic Fauna and Slope Instability Relationships , 1982 .

[74]  D. Wood,et al.  Micro-scale geotechnical variability in continental slope and abyssal sediments influenced by the oxygen minimum zone in the Arabian Sea , 2000 .

[75]  K. Hsü Physical Principles of Sedimentology , 1989 .

[76]  P. J. Morgan,et al.  Observations on the burrows and burrowing behaviour of Calocaris macandreae (Crustacea: Decapoda: Thalassinoidea) , 1984 .

[77]  An expendable penetrometer for rapid assessment of seafloor parameters , 1995, 'Challenges of Our Changing Global Environment'. Conference Proceedings. OCEANS '95 MTS/IEEE.

[78]  Y. Avnimelech,et al.  Mutual Flocculation of Algae and Clay: Evidence and Implications , 1982, Science.

[79]  J. Murray,et al.  Bioturbation, geochemistry and geotechnics of sediments affected by the oxygen minimum zone on the Oman continental slope and abyssal plain, Arabian Sea , 2000 .

[80]  M. Shilo,et al.  The role of cell‐bound flocculants in coflocculation of benthic cyanobacteria with clay particles , 1988 .

[81]  J. R. Allen Physical processes of sedimentation : an introduction , 1970 .

[82]  A. L. Rice,et al.  A Quantitative Photographic Survey of ‘Spoke‐Burrow’ Type Lebensspuren on the Cape Verde Abyssal Plain , 1995 .

[83]  M. Richardson,et al.  Geoacoustic models and bioturbation , 1980 .

[84]  P. Meadows Marine biology: Biological activity and seabed sediment structure , 1986, Nature.

[85]  T. Mulder,et al.  Regional assessment of mass failure events in the Baie des Anges, Mediterranean Sea , 1994 .

[86]  P. S. Meadows,et al.  Microbial and meiofaunal abundance, redox potential, pH and shear strength profiles in deep sea Pacific sediments , 1994, Journal of the Geological Society.

[87]  O. Iribarne,et al.  The Role of Burrows of the SW Atlantic Intertidal Crab Chasmagnathus granulata in Trapping Debris , 2000 .

[88]  J. Trevor The burrowing activity of Nephtys cirrosa Ehlers (Annelida: Polychaeta) , 1976 .

[89]  John M. Reynolds,et al.  An Introduction to Applied and Environmental Geophysics , 1997 .

[90]  R. H. Meade,et al.  World-Wide Delivery of River Sediment to the Oceans , 1983, The Journal of Geology.

[91]  D. Rhoads,et al.  Animal-sediment relations in Cape Cod Bay, Massachusetts II. Reworking by Molpadia oolitica (Holothuroidea) , 1971 .

[92]  C. F. Jago,et al.  In situ assessment of modification of sediment properties by burrowing invertebrates , 1993 .

[93]  A. Tudhope,et al.  The Effects of Callianassa Bioturbation on the Preservation of Carbonate Grains in Davies Reef Lagoon, Great Barrier Reef, Australia , 1984 .

[94]  N. C. Wardlaw,et al.  Bacterial Fouling in a Model Core System , 1985, Applied and environmental microbiology.

[95]  M. Seymour Skeletons of Lumbricus terrestris L. and Arenicola marina (L.) , 1970, Nature.

[96]  David M. Paterson,et al.  Short‐term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms , 1989 .

[97]  R. Warwick,et al.  The significance of free-living nematodes to the littoral ecosystem. , 1980 .

[98]  P. Jensen Cerianthus vogti Danielssen, 1890 (Anthozoa: Ceriantharia). A species inhabiting an extended tube system deeply buried in deep-sea sediments off Norway , 1992 .

[99]  G. Gust,et al.  Biological pumps at the sediment-water interface: Mechanistic evaluation of the alpheid shrimp Alpheus mackayi and its irrigation pattern , 1981 .

[100]  J. Gage,et al.  Community structure of the benthos in Scottish sea-lochs. II. Spatial pattern , 1973 .

[101]  M. Richardson The effects of bioturbation on sediment elastic properties , 1983 .

[102]  D. Wood,et al.  Microbiological effects on slope stability: an experimental analysis , 1994 .

[103]  T. Suchanek,et al.  Mussels in flow: drag and dislodgement by epizoans , 1984 .

[104]  K. Pye Sediment transport and depositional processes , 1994 .

[105]  Robert L. Folk,et al.  Petrology of Sedimentary Rocks , 1974 .

[106]  C. Grimes,et al.  The Role of Erosion by Fish in Shaping Topography Around Hudson Submarine Canyon , 1985 .

[107]  E W Fager,et al.  Marine Sediments: Effects of a Tube-Building Polychaete , 1964, Science.

[108]  E. Pinn,et al.  The Effect of Bioturbation on Roxann®, a Remote Acoustic Seabed Discrimination System , 1998, Journal of the Marine Biological Association of the United Kingdom.

[109]  G. Macginitie,et al.  Between Pacific Tides. , 1939 .

[110]  D. Rhoads,et al.  SEAFLOOR STABILITY IN CENTRAL LONG ISLAND SOUND: Part II. Biological Interactions And Their Potential Importance for Seafloor Erodibility , 1978 .

[111]  Peter A. Jumars,et al.  Fluid and Sediment Dynamic Effects on Marine Benthic Community Structure , 1984 .

[112]  L. Levin,et al.  Variations in bioturbation across the oxygen minimum zone in the northwest Arabian Sea , 2000 .

[113]  L. Levin,et al.  Nematode abundance at the oxygen minimum zone in the Arabian Sea. , 2000 .

[114]  M W Denny Invertebrate mucous secretions: functional alternatives to vertebrate paradigms. , 1989, Symposia of the Society for Experimental Biology.

[115]  P. S. Virk Drag reduction by collapsed and extended polyelectrolytes , 1975, Nature.

[116]  P. Brewer,et al.  Biological Control of the Removal of Abiogenic Particles from the Surface Ocean , 1983, Science.

[117]  G. Henderson,et al.  Variation in bioturbation with water depth on marine slopes: a study on the Little Bahamas Bank , 1999 .

[118]  C. Grimes,et al.  Burrow construction and behavior of tilefish, Lopholatilus chamaeleonticeps, in Hudson Submarine Canyon , 1982, Environmental Biology of Fishes.

[119]  P. Kenis Drag Reduction by Bacterial Metabolites , 1968, Nature.

[120]  A. Mcintyre,et al.  ECOLOGY OF MARINE MEIOBENTHOS , 1969 .

[121]  Cheryl Ann Butman,et al.  Animal-sediment relationships revisited: cause versus effect , 1994 .

[122]  William Roberts,et al.  Dynamics of Estuarine Muds , 2001 .

[123]  D. Bottjer,et al.  Sedimentary Environments and Facies , 1978 .

[124]  G. Cadée,et al.  Sediment reworking by arenicola marina on tidal flats in the Dutch Wadden Sea , 1976 .

[125]  J. Hoyt,et al.  Algal Cultures: Ability To Reduce Turbulent Friction in Flow , 1965, Science.

[126]  F. Riemann,et al.  The mucus-trap hypothesis on feeding of aquatic nematodes and implications for biodegradation and sediment texture , 2004, Oecologia.

[127]  B. R. Davies,et al.  The filtration activity of a serpulid polychaete population ( Ficopomatus enigmaticus (Fauvel) and its effects on water quality in a coastal marina , 1989 .

[128]  O. Iribarne,et al.  Sediment bioturbation by Polychaete feeding may promote sediment stability , 2000 .

[129]  A. R. Nowell,et al.  Effects of Biological Activity on the Entrainment of Marine Sediments , 1981 .

[130]  P. S. Meadows,et al.  Experimental analysis of byssus thread production by Mytilus edulis and Modiolus modiolus in sediments , 1989 .