Financial Markets with Memory II: Innovation Processes and Expected Utility Maximization

Abstract We develop a prediction theory for a class of processes with stationary increments. In particular, we prove a prediction formula for these processes from a finite segment of the past. Using the formula, we prove an explicit representation of the innovation processes associated with the stationary increments processes. We apply the representation to obtain a closed-form solution to the problem of expected logarithmic utility maximization for the financial markets with memory introduced by the first and second authors.

[1]  A. Shiryayev,et al.  Statistics of Random Processes I: General Theory , 1984 .

[2]  A. Inoue Asymptotics for the partial autocorrelation function of a stationary process , 2000 .

[3]  Kiyosi Itô,et al.  Stationary random distributions , 1954 .

[4]  On the Extrapolation of Generalized Stationary Random Processes , 1959 .

[5]  G. Gripenberg,et al.  On the prediction of fractional Brownian motion , 1996, Journal of Applied Probability.

[6]  Philip Maher,et al.  A Hilbert space problem book (2nd edition) , by P. R. Halmos. Pp 369. £43. 1982. ISBN 0-387-90685-1 (Springer) , 1989 .

[7]  Harry Dym,et al.  Gaussian processes, function theory, and the inverse spectral problem , 1976 .

[8]  Michael B. Marcus,et al.  Review: H. Dym, H. P. McKean, Gaussian Processes, Function Theory and the Inverse Spectral Problem , 1977 .

[9]  F. Smithies A HILBERT SPACE PROBLEM BOOK , 1968 .

[10]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .

[11]  A. Inoue,et al.  Asymptotic behaviour for partial autocorrelation functions of fractional ARIMA processes , 2000 .

[12]  N. Levinson,et al.  Weighted trigonometrical approximation onR1 with application to the Germ field of a stationary Gaussian noise , 1964 .

[13]  A. Inoue,et al.  Partial autocorrelation functions of the fractional ARIMA processes with negative degree of differencing , 2000 .

[14]  A. Seghier Prédiction d'un processus stationnaire du second ordre de covariance connue sur un intervalle fini , 1978 .

[15]  H. Heyer Statistics of random processes I: General theory , 1983 .

[16]  V. Anh,et al.  Financial Markets with Memory I: Dynamic Models , 2005 .