Highly Fluorescent Poly(dimethylsiloxane) for On‐Chip Temperature Measurements

This work describes a convenient method to generate a poly(dimethylsiloxane) (PDMS) composite containing ZnO quantum dots (QDs) for whole-chip temperature measurements. This composite is highly fluorescent and very sensitive to temperature changes (0.4 nm °C−1, compared to 0.1 nm °C−1 in commonly used CdSe QDs). It also shows extremely high fluorescent stability under various conditions over long time without phase separation or fluorescent changes. Both merits make this composite an ideal material for sensing temperature changes on microfluidic chips. The bonding between the QDs and PDMS is studied by comparing PDMS composites with ZnO QDs of different sizes, and a model is given to elucidate the high stability of this composite.

[1]  Eli Ruckenstein,et al.  Water-Soluble Poly(acrylic acid) Grafted Luminescent Silicon Nanoparticles and Their Use as Fluorescent Biological Staining Labels , 2004 .

[2]  M. Gaitan,et al.  Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. , 2001, Analytical chemistry.

[3]  S. Jacobson,et al.  Integrated system for rapid PCR-based DNA analysis in microfluidic devices. , 2000, Analytical chemistry.

[4]  Frank G. Shi,et al.  In Situ Synthesis of Polymer Nanocomposite Electrolytes Emitting a High Luminescence with a Tunable Wavelength , 2003 .

[5]  Eric A. Meulenkamp,et al.  Synthesis and Growth of ZnO Nanoparticles , 1998 .

[6]  M. Anderson,et al.  Visible Luminescence and Surface Properties of Nanosized ZnO Colloids Prepared by Hydrolyzing Zinc Acetate , 1998 .

[7]  P. J. van der Zaag,et al.  Temperature Dependence of the Photoluminescence of InP/ZnS Quantum Dots , 2008 .

[8]  Hongkai Wu,et al.  Fabrication of complex three-dimensional microchannel systems in PDMS. , 2003, Journal of the American Chemical Society.

[9]  Elisabeth Verpoorte,et al.  A microfluidic platform using molecular beacon-based temperature calibration for thermal dehybridization of surface-bound DNA. , 2004, Analytical chemistry.

[10]  H. Mao,et al.  A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements. , 2002, Journal of the American Chemical Society.

[11]  R. L. Dekock,et al.  The Crucial Role of Kinetic Energy in Interpreting Ionization Energies , 1998 .

[12]  Andreas Manz,et al.  Scaling and the design of miniaturized chemical-analysis systems , 2006, Nature.

[13]  Kai Zhang,et al.  Single quantum dots as local temperature markers. , 2007, Nano letters.

[14]  Kristen L. Helton,et al.  Microfluidic Overview of Global Health Issues Microfluidic Diagnostic Technologies for Global Public Health , 2006 .

[15]  D. Erickson,et al.  Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems. , 2003, Lab on a chip.

[16]  T. Beveridge,et al.  Regioselective silylation of sugars through palladium nanoparticle-catalyzed silane alcoholysis. , 2002, Journal of the American Chemical Society.

[17]  X. H. Zhang,et al.  Surface modification of ZnO nanocrystals , 2007 .

[18]  S. Mahamuni,et al.  Luminescence behaviour of chemically grown ZnO quantum dots , 1998 .

[19]  D. Bornhop,et al.  Noninvasive picoliter volume thermometry based on backscatter interferometry , 2001, Electrophoresis.

[20]  Shunsuke Nakanishi,et al.  Relations between Dewetting of Polymer Thin Films and Phase-Separation of Encompassed Quantum Dots , 2008 .

[21]  Hideya Nagata,et al.  Fabrication of a quantum dot-polymer matrix by layer-by-layer conjugation , 2006 .

[22]  F. Marshall,et al.  In vivo molecular and cellular imaging with quantum dots. , 2005, Current opinion in biotechnology.

[23]  A Manz,et al.  Chemical amplification: continuous-flow PCR on a chip. , 1998, Science.

[24]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[25]  Tomasz Glawdel,et al.  Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/rhodamine B. , 2008, Analytical chemistry.

[26]  Bo Huang,et al.  Counting Low-Copy Number Proteins in a Single Cell , 2007, Science.

[27]  J. E. Lyons,et al.  Stereochemistry of asymmetric silicon. XVI. Transition metal catalyzed substitution reactions of optically active organosilicon hydrides , 1969 .

[28]  Stephen Quake,et al.  A nanoliter rotary device for polymerase chain reaction , 2002, Electrophoresis.

[29]  Vikram C. Sundar,et al.  Quantum-dot optical temperature probes , 2003 .