Resequencing Study Con fi rms That Host Defense and Cell Senescence Gene Variants Contribute to the Risk of Idiopathic Pulmonary Fibrosis

Rationale: Several common and rare genetic variants have been associated with idiopathic pulmonary fi brosis, a progressive fi brotic condition that is localized to the lung. Objectives: To develop an integrated understanding of the rare and common variants located in multiple loci that have been reported to contribute to the risk of disease. Methods: We performed deep targeted resequencing (3.69 Mb of DNA) in cases ( n =3,624) and control subjects ( n =4,442) across genes and regions previously associated with disease. We tested for associations betweendiseaseand 1 )individualcommonvariantsvialogisticregression and 2 ) groups of rare variants via sequence kernel association tests. Measurements and Main Results: Statistically signi fi cant common variant association signals occurred in all 10 of the regions chosen based on genome-wide association studies. The strongest risk variant is the MUC5B promoter variant rs35705950, with an odds ratio of 5.45 (95% con fi dence interval, 4.91 – 6.06) for one copyoftheriskalleleand18.68(95%con fi denceinterval,13.34 – 26.17)for twocopiesoftheriskallele( P =9.60 3 10 2 295 ).Inadditiontoidentifying forthe fi rsttimethatrarevariationin FAM13A isassociatedwithdisease, we con fi rmed the role of rare variation in the TERT and RTEL1 gene regions in the risk of IPF, and found that the FAM13A and TERT regions have independent common and rare variant signals. Conclusions: A limited number of common and rare variants contribute to the risk of idiopathic pulmonary fi brosis in each of the resequencing regions, and these genetic variants focus on biological mechanisms of host defense and cell senescence. S.D.N., D.C.V., M.L.W., N.K., J.A.d.A., T.L., T.K., F.B., S.C.D., A.M., M.E.A., A.A., R.G.C., T.W., M.B., G.L., S.B., C.P., and F.P. provided data and samples. S.K.M., M.I.S., M.P.S, J.L., K.K.B., J.E.L., and D.A.S. coordinated the clinical evaluations and integrated the findings with clinical aspects of idiopathic pulmonary fibrosis. I.V.Y. and A.W. supervised and coordinated the laboratory work. A.W. performed the DNA preparation. D.A.N. supervised the targeted resequencing. K.B.B. supervised the AIMS genotyping. T.E.F. and D.A.S. developed the conceptual approaches to data analysis, and T.E.F. planned and supervised the analysis. C.M., R.Z.B., P.R., B.V., and J.C. performed the data cleaning and analysis. C.M., R.Z.B., T.E.F., and D.A.S. wrote the manuscript.

Ivana V. Yang | Brian E. Vestal | Camille M. Moore | Pamela H. Russell | D. Nickerson | E. Silverman | J. Crapo | Joyce S Lee | H. Collard | I. Noth | K. Beckman | M. Cho | V. Poletti | G. Gudmundsson | D. Rassl | Shwu-Fan Ma | M. Selman | K. Brown | M. Steele | P. Wolters | S. Nathan | Y. Inoue | C. Ryerson | T. Fingerlin | J. Cogan | J. Guthridge | O. Eickelberg | M. Keane | R. Borie | K. Gibson | J. Loyd | H. Isaksson | Yingze Zhang | T. Maher | P. Molyneaux | D. S. Kim | C. Markin | M. Schwarz | I. Yang | P. Saunders | E. Bendstrup | I. Glaspole | T. Corte | J. Kropski | D. Kass | J. Song | F. Bonella | J. James | Seamus Donnelly | B. Crestani | J. Cardwell | M. Molina-Molina | W. Ji | A. Walts | Rachel Z. Blumhagen | S. Tomassetti | M. Kreider | Roberto G. Carbone | D. Lederer | J. Sembrat | S. Baltic | F. Puppo | C. Kannengiesser | J. Swigris | B. Shea | L. Maier | T. Kulkarni | J. Sundy | C. Fiddler | C. Ravaglia | A. Podolanczuk | K. Ohta | I. Fernandez | P. Wilcox | S. Mathai | N. Hirani | N. Kokturk | T. Arai | M. Sterclova | N. Mogulkoc | M. Vašáková | T. Luckhardt | H. Parfrey | S. Montesi | Y. Miyazaki | Tarik Walker | David A Schwartz | S. Akagawa | T. Okamoto | H. Furusawa | Joao A. Andrade | M. Porteous | M. Suzukawa | K. Pacheco | Y. Moodley | M. Hirose | O. Narumoto | C. Machahua | G. Saini | R. Jenkins | Feng Li | R. Braybrooke | P. Doran | M. T. Henry | C. Prêle | Namrata Patel | Annie Pardo | D. Venuto | Jürgen Behr | A. M. Worboys | G. Laurent | Riordan | A. Aranda | M. Rojas | Julie E. Powers | Makenna Bishop | Carol Bair | Hocheol Kim | Azin Poon | O. Thomas | Maria Stręk | Vivi Danchel | M. L. Woldehanna | A. McElroy | Michelle E. Armstong | S. Ma | J. Behr | Feng Li | Joyce S. Lee | D. A. Schwartz | J. Andrade | Shwu-Fan Ma | A. Pardo | R. Blumhagen | M. Stręk | Y. Inoue

[1]  Ivana V. Yang,et al.  Muc5b overexpression causes mucociliary dysfunction and enhances lung fibrosis in mice , 2018, Nature Communications.

[2]  Takeshi Johkoh,et al.  Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline , 2018, American journal of respiratory and critical care medicine.

[3]  Christopher R. Cabanski,et al.  Analysis of protein-altering variants in telomerase genes and their association with MUC5B common variant status in patients with idiopathic pulmonary fibrosis: a candidate gene sequencing study. , 2018, The Lancet. Respiratory medicine.

[4]  Astrid Gall,et al.  Ensembl 2018 , 2017, Nucleic Acids Res..

[5]  Carlos Flores,et al.  Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry: a genome-wide association study , 2017, The Lancet. Respiratory medicine.

[6]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[7]  Brent S. Pedersen,et al.  Regulation of MUC5B Expression in Idiopathic Pulmonary Fibrosis , 2017, American journal of respiratory cell and molecular biology.

[8]  Harry J de Koning,et al.  Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis , 2017, Nature Genetics.

[9]  Ivana V. Yang,et al.  Idiopathic Pulmonary Fibrosis: A Genetic Disease That Involves Mucociliary Dysfunction of the Peripheral Airways. , 2016, Physiological reviews.

[10]  Brent S. Pedersen,et al.  Genome-wide imputation study identifies novel HLA locus for pulmonary fibrosis and potential role for auto-immunity in fibrotic idiopathic interstitial pneumonia , 2016, BMC Genetics.

[11]  Brent S. Pedersen,et al.  Desmoplakin Variants Are Associated with Idiopathic Pulmonary Fibrosis. , 2016, American journal of respiratory and critical care medicine.

[12]  Ivana V. Yang,et al.  MUC5B Promoter Variant rs35705950 Affects MUC5B Expression in the Distal Airways in Idiopathic Pulmonary Fibrosis. , 2016, American journal of respiratory and critical care medicine.

[13]  N. Kohno,et al.  MUC5B promoter polymorphism in Japanese patients with idiopathic pulmonary fibrosis , 2015, Respirology.

[14]  S. Mane,et al.  Exome Sequencing Links Mutations in PARN and RTEL1 with Familial Pulmonary Fibrosis and Telomere Shortening , 2015, Nature Genetics.

[15]  Lizhi Xu,et al.  Mucin 5B Promoter Polymorphism Is Associated with Susceptibility to Interstitial Lung Diseases in Chinese Males , 2014, PloS one.

[16]  S. Rosselot Idiopathic pulmonary fibrosis. , 2014, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[17]  Naftali Kaminski,et al.  Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. , 2013, The Lancet. Respiratory medicine.

[18]  Brent S. Pedersen,et al.  Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis , 2013, Nature Genetics.

[19]  D. Hill,et al.  A Periciliary Brush Promotes the Lung Health by Separating the Mucus Layer from Airway Epithelia , 2012, Science.

[20]  M. Rieder,et al.  Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. , 2012, American journal of human genetics.

[21]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[22]  Ivana V. Yang,et al.  A common MUC5B promoter polymorphism and pulmonary fibrosis. , 2011, The New England journal of medicine.

[23]  A. Gautreau,et al.  A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response , 2011, Science.

[24]  P. Cossart,et al.  Human BAHD1 promotes heterochromatic gene silencing , 2009, Proceedings of the National Academy of Sciences.

[25]  N. Grishin,et al.  Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. , 2009, American journal of human genetics.

[26]  Chao Xing,et al.  Adult-onset pulmonary fibrosis caused by mutations in telomerase , 2007, Proceedings of the National Academy of Sciences.

[27]  P. Lansdorp,et al.  Telomerase mutations in families with idiopathic pulmonary fibrosis. , 2007, The New England journal of medicine.

[28]  F. Askin,et al.  A mutation in the surfactant protein C gene associated with familial interstitial lung disease. , 2001, The New England journal of medicine.