On vocabulary size of grammar-based codes
暂无分享,去创建一个
[1] Lukasz Debowski,et al. On Hilberg's law and its links with Guiraud's law* , 2005, J. Quant. Linguistics.
[2] Paul C. Shields,et al. Universal redundancy rates do not exist , 1993, IEEE Trans. Inf. Theory.
[3] En-Hui Yang,et al. Grammar-based codes: A new class of universal lossless source codes , 2000, IEEE Trans. Inf. Theory.
[4] W. Hilberg,et al. Der bekannte Grenzwert der redundanzfreien Information in Texten - eine Fehlinterpretation der Shannonschen Experimente? , 1990 .
[5] L. Debowski,et al. Ergodic decomposition of excess entropy and conditional mutual information , 2006 .
[6] Abhi Shelat,et al. The smallest grammar problem , 2005, IEEE Transactions on Information Theory.
[7] P. Shields. String matching bounds via coding , 1997 .
[8] J. Gerard Wolfp,et al. Language Acquisition and the Discovery of Phrase Structure , 1980 .
[9] P. Shields. Universal Redundancy Rates Don't Exist , 1993, Proceedings. IEEE International Symposium on Information Theory.
[10] String Matching: The Ergodic Case , 1992 .
[11] David L. Neuhoff,et al. Simplistic Universal Coding. , 1998, IEEE Trans. Inf. Theory.
[12] J. Wolff,et al. Language Acquisition and the Discovery of Phrase Structure , 1980, Language and speech.
[13] Peter Elias,et al. Universal codeword sets and representations of the integers , 1975, IEEE Trans. Inf. Theory.
[14] Carl de Marcken,et al. Unsupervised language acquisition , 1996, ArXiv.
[15] Lukasz Debowski,et al. Menzerath's law for the smallest grammars , 2007, Exact Methods in the Study of Language and Text.
[16] Craig G. Nevill-Manning,et al. Inferring Sequential Structure , 1996 .