Development of time-temperature-humidity superposition principle for asphalt mixtures

[1]  Jianxiong Lu,et al.  Temperature-humidity-time equivalence and relaxation in dynamic viscoelastic response of Chinese fir wood , 2019 .

[2]  J. Lutkenhaus,et al.  Time–Temperature and Time–Water Superposition Principles Applied to Poly(allylamine)/Poly(acrylic acid) Complexes , 2019, Macromolecules.

[3]  Joseph H. Podolsky,et al.  Effect of corn and soybean oil derived additives on polymer-modified HMA and WMA master curve construction and dynamic modulus performance , 2018, International Journal of Pavement Research and Technology.

[4]  Rong Luo,et al.  Investigation of effect of temperature on water vapor diffusing into asphalt mixtures , 2018, Construction and Building Materials.

[5]  Rong Luo,et al.  Development of a three-dimensional diffusion model for water vapor diffusing into asphalt mixtures , 2018, Construction and Building Materials.

[6]  Rong Luo,et al.  Water vapor passing through asphalt mixtures under different relative humidity differentials , 2018 .

[7]  Rong Luo,et al.  Development of master curve models complying with linear viscoelastic theory for complex moduli of asphalt mixtures with improved accuracy , 2017 .

[8]  Rong Luo,et al.  Improving the Accuracy of Dynamic Modulus Master Curves of Asphalt Mixtures Constructed Using Uniaxial Compressive Creep Tests , 2017 .

[9]  X. Qian,et al.  Temperature-dependent viscoelastic model for asphalt concrete using discrete rheological representation , 2015 .

[10]  K. Winey,et al.  Temperature Dependence of Rheology and Polymer Diffusion in Silica/Polystyrene Nanocomposites , 2015 .

[11]  Robert L. Lytton,et al.  Moisture and aging damage evaluation of asphalt mixtures using the repeated direct tensional test method , 2015 .

[12]  Qian Zhendon Dynamic response of asphalt pavement under moving loads with low and variable speed , 2015 .

[13]  Zhansheng Guo,et al.  Combined effect of relative humidity and temperature on dynamic viscoelastic properties and glass transition of poly(vinyl alcohol) , 2013 .

[14]  Jean-François Deü,et al.  Application of Kramers–Kronig relations to time–temperature superposition for viscoelastic materials , 2013 .

[15]  Cédric Sauzéat,et al.  Time Temperature Superposition Principle Validation for Bituminous Mixes in the Linear and Nonlinear Domains , 2013 .

[16]  Zhengqi Zhang,et al.  Effect of Temperature and Frequency on Visco-Elastic Dynamic Response of Asphalt Mixture , 2013 .

[17]  L. Geng,et al.  Master Curves of Dynamic Modulus and Phase Angle for High Modulus Asphalt Mixtures , 2011 .

[18]  Lubinda F. Walubita,et al.  Evaluating and comparing different methods and models for generating relaxation modulus master-curves for asphalt mixes , 2011 .

[19]  Simon Pouget,et al.  Time-temperature superposition principle for bituminous mixtures , 2009 .

[20]  B. Duperray,et al.  Applications of exact causality relationships to materials dynamic analysis , 2007 .

[21]  I. Sasaki,et al.  Water/gas Permeability of Bituminous Mixtures and Involvement in Blistering Phenomenon , 2006 .

[22]  T. Vu-khanh,et al.  Application of time-stress equivalence to nonlinear creep of polycarbonate , 2005 .

[23]  W. Brostow,et al.  Time–temperature correspondence prediction of stress relaxation of polymeric materials from a minimum of data , 2002 .

[24]  K. Tashiro,et al.  Confirmation of universality of time–humidity superposition principle for various water‐absorbable polymers through dynamic viscoelastic measurements under controlled conditions of relative humidity and temperature , 2001 .

[25]  L. Palade,et al.  Linear viscoelastic behavior of asphalt and asphalt based mastic , 2000 .

[26]  K. Raju,et al.  Applicability of the WLF equation to polyurethane polyols and film properties of their resins , 1995 .

[27]  Warren P. Mason,et al.  Introduction to polymer viscoelasticity , 1972 .