Reciprocal space engineering with hyperuniform gold metasurfaces

Hyperuniform geometries feature correlated disordered topologies which follow from a tailored k-space design. Here we study gold plasmonic hyperuniform metasurfaces and we report evidence of the effectiveness of k-space engineering on both light scattering and light emission experiments. The metasurfaces possess interesting directional emission properties which are revealed by momentum spectroscopy as diffraction and fluorescence emission rings at size-specific k-vectors. The opening of these rotational-symmetric patterns scales with the hyperuniform correlation length parameter as predicted via the spectral function method.

[1]  Jianying Zhou,et al.  Deterministic quasi-random nanostructures for photon control , 2013, Nature Communications.

[2]  N. V. van Hulst,et al.  Transparent metallic fractal electrodes for semiconductor devices. , 2014, Nano letters.

[3]  Salvatore Torquato,et al.  Complete band gaps in two-dimensional photonic quasicrystals , 2009, 1007.3555.

[4]  C. David Wright,et al.  An optoelectronic framework enabled by low-dimensional phase-change films , 2014, Nature.

[5]  Frank Scheffold,et al.  Silicon Hyperuniform Disordered Photonic Materials with a Pronounced Gap in the Shortwave Infrared , 2014 .

[6]  Nate Lawrence,et al.  Aperiodic arrays of active nanopillars for radiation engineering , 2012 .

[7]  Omar M. Ramahi,et al.  Metamaterial electromagnetic energy harvester with near unity efficiency , 2015 .

[8]  A. Tredicucci,et al.  Hyperuniform disordered terahertz quantum cascade laser , 2016, Scientific Reports.

[9]  A. Koenderink,et al.  Statistics of Randomized Plasmonic Lattice Lasers , 2015 .

[10]  Abul K. Azad,et al.  Metasurface Broadband Solar Absorber , 2015, Scientific Reports.

[11]  Salvatore Torquato,et al.  Optical cavities and waveguides in hyperuniform disordered photonic solids , 2013, 1311.2446.

[12]  D. Wiersma,et al.  Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption. , 2012, Optics express.

[13]  J. Rivas,et al.  Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas. , 2010, Physical review letters.

[14]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[15]  Salvatore Torquato,et al.  Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids , 2013, Proceedings of the National Academy of Sciences.

[16]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[17]  Soon Moon Jeong,et al.  Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles , 2010 .

[18]  Wen Zhou,et al.  Hyperuniform Disordered Network Polarizers , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  R'emi Carminati,et al.  High-density hyperuniform materials can be transparent , 2015, 1510.05807.

[20]  N. V. van Hulst,et al.  Percolating plasmonic networks for light emission control. , 2015, Faraday discussions.

[21]  Mark D. Huntington,et al.  Quasiperiodic moiré plasmonic crystals. , 2013, ACS nano.

[22]  Salvatore Torquato,et al.  Designer disordered materials with large, complete photonic band gaps , 2009, Proceedings of the National Academy of Sciences.

[23]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[24]  Timothy Amoah,et al.  High-Q optical cavities in hyperuniform disordered materials , 2015 .

[25]  D. Wiersma,et al.  Fifty years of Anderson localization , 2009 .

[26]  Sharon C Glotzer,et al.  Role of Short-Range Order and Hyperuniformity in the Formation of Band Gaps in Disordered Photonic Materials. , 2016, Physical review letters.

[27]  L. Dal Negro,et al.  Deterministic aperiodic nanostructures for photonics and plasmonics applications , 2012 .

[28]  L. D. Negro,et al.  Plasmon-enhanced random lasing in bio-compatible networks of cellulose nanofibers , 2016 .

[29]  Cotter,et al.  Photonic gaps in the dispersion of surface plasmons on gratings. , 1995, Physical review. B, Condensed matter.

[30]  G. Wurtz,et al.  Shaping plasmon beams via the controlled illumination of finite-size plasmonic crystals , 2014, Scientific Reports.

[31]  Behrad Gholipour,et al.  An All‐Optical, Non‐volatile, Bidirectional, Phase‐Change Meta‐Switch , 2013, Advanced materials.

[32]  P. Morvillo,et al.  Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy. , 2015, Physical chemistry chemical physics : PCCP.