Global Trade Imbalances: A Network Approach

In this paper, we study trade imbalances between world countries in the period 1960–2011 using a complex-network approach. We show that trade imbalances in absolute value are characterized by a hierarchical arrangement wherein a few developed economies display high clustering and carry an important amount of global-trade imbalances. In contrast, trade imbalances in relative terms show a more fragmented topology, with less concentrated clustering which is particularly high for developing countries. In addition, we find that traditional null random-network models and the gravity model poorly predict the topology of trade imbalance networks. Our main finding is that the evolution of international trade has caused very heterogeneous imbalances in world economies, which may have important consequences for global instability and development.

[1]  S. Wei,et al.  The WTO Promotes Trade, Strongly But Unevenly , 2003, SSRN Electronic Journal.

[2]  Alessandro Vespignani,et al.  The Structure of Interurban Traffic: A Weighted Network Analysis , 2005, physics/0507106.

[3]  Marc J. Melitz The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity , 2003 .

[4]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[5]  Alessandro Vespignani,et al.  Detecting rich-club ordering in complex networks , 2006, physics/0602134.

[6]  Steve Horvath,et al.  Weighted Network Analysis , 2011 .

[7]  G. Fagiolo Clustering in complex directed networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[9]  Aaditya Mattoo,et al.  Currency Undervaluation and Sovereign Wealth Funds: A New Role for the World Trade Organization , 2008 .

[10]  Juan A. Marchetti,et al.  Trade Imbalances and Multilateral Trade Cooperation , 2012, SSRN Electronic Journal.

[11]  L. Tajoli,et al.  The World Trade Network , 2011 .

[12]  E S Roberts,et al.  Unbiased degree-preserving randomization of directed binary networks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  S. S. Manna,et al.  The International Trade Network , 2007, 0707.4347.

[14]  B. Bernanke The global saving glut and the U.S. current account deficit , 2005 .

[15]  Diego Garlaschelli,et al.  Fitness-dependent topological properties of the world trade web. , 2004, Physical review letters.

[16]  Giorgio Fagiolo,et al.  Assessing the Evolution of International Economic Integration Using Random Walk Betweenness Centrality: the Cases of East Asia and Latin America , 2008, Adv. Complex Syst..

[17]  J. Bergstrand,et al.  Gravity Redux: Estimation of Gravity-Equation Coefficients, Elasticities of Substitution, and General Equilibrium Comparative Statics under Asymmetric Bilateral Trade Costs , 2013 .

[18]  Daria Taglioni,et al.  Gravity for Dummies and Dummies for Gravity Equations , 2006 .

[19]  D. Garlaschelli,et al.  Structure and evolution of the world trade network , 2005, physics/0502066.

[20]  Giorgio Fagiolo,et al.  World-trade web: topological properties, dynamics, and evolution. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  E. Helpman,et al.  ESTIMATING TRADE FLOWS : TRADING PARTNERS AND TRADING VOLUMES Elhanan Helpman , 2007 .

[22]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[23]  J. Bergstrand The Gravity Equation in International Trade: Some Microeconomic Foundations and Empirical Evidence , 1985 .

[24]  Marián Boguñá,et al.  Patterns of dominant flows in the world trade web , 2007, 0704.1225.

[25]  M. Barigozzi The multi-network of international trade : A commodity-specific analysis , 2009 .

[26]  R. Feenstra Advanced international trade : theory and evidence , 2004 .

[27]  G. Fagiolo,et al.  The evolution of the world trade web: a weighted-network analysis , 2008 .

[28]  Silvana Tenreyro,et al.  The Log of Gravity , 2004, The Review of Economics and Statistics.

[29]  Frank Schweitzer,et al.  Economic Networks: What Do We Know and What Do We Need to Know? , 2009, Adv. Complex Syst..

[30]  James E. Anderson,et al.  Gravity with Gravitas: A Solution to the Border Puzzle , 2001 .

[31]  Giorgio Fagiolo,et al.  The international-trade network: gravity equations and topological properties , 2009, 0908.2086.

[32]  Giorgio Fagiolo,et al.  Randomizing world trade. I. A binary network analysis. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  M. Bussière,et al.  A Framework for Assessing Global Imbalances , 2008, SSRN Electronic Journal.

[34]  Guanrong Chen,et al.  Complexity and synchronization of the World trade Web , 2003 .

[35]  Tore Opsahl,et al.  Prominence and control: the weighted rich-club effect. , 2008, Physical review letters.

[36]  G. Fagiolo,et al.  Modeling the International-Trade Network: a gravity approach , 2011, 1112.2867.

[37]  Marián Boguñá,et al.  Topology of the world trade web. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  David E. Weinstein,et al.  The Mystery of the Excess Trade (Balances) , 2002 .

[39]  Giorgio Fagiolo,et al.  Multinetwork of international trade: a commodity-specific analysis. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  P. Krugman,et al.  The Persistence of the U.S. Trade Deficit , 1987 .

[41]  K. Kaski,et al.  The International Trade Network: weighted network analysis and modelling , 2007, 0707.4343.

[42]  T. Aste,et al.  Interplay between topology and dynamics in the World Trade Web , 2007 .

[43]  F. Chung,et al.  Connected Components in Random Graphs with Given Expected Degree Sequences , 2002 .

[44]  Giorgio Fagiolo,et al.  On the Topological Properties of the World Trade Web: A Weighted Network Analysis , 2007, 0708.4359.

[45]  Giorgio Fagiolo,et al.  Null models of economic networks: the case of the world trade web , 2011, 1112.2895.

[46]  Giorgio Fagiolo,et al.  Randomizing world trade. II. A weighted network analysis. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Andrew K. Rose,et al.  Dynamic Persistence of Industry Trade Balances: How Pervasive Is the Product Cycle? , 1995 .