A review on photoelectrochemical hydrogen production systems: Challenges and future directions

[1]  Š. Kment,et al.  α-Fe2O3/TiO2 stratified photoanodes , 2018, Journal of Photochemistry and Photobiology A: Chemistry.

[2]  Zhifeng Liu,et al.  Dual-Axial Gradient Doping (Zr and Sn) on Hematite for Promoting Charge Separation in Photoelectrochemical Water Splitting. , 2018, ChemSusChem.

[3]  B. Wei,et al.  Recent advances in rational engineering of multinary semiconductors for photoelectrochemical hydrogen generation , 2018, Nano Energy.

[4]  T. Jacobsson Photoelectrochemical water splitting: an idea heading towards obsolescence? , 2018 .

[5]  Prashanth Jampani Hanumantha,et al.  Active and robust novel bilayer photoanode architectures for hydrogen generation via direct non-electric bias induced photo-electrochemical water splitting , 2018, International Journal of Hydrogen Energy.

[6]  Chengcheng Li,et al.  Surface, Bulk, and Interface: Rational Design of Hematite Architecture toward Efficient Photo‐Electrochemical Water Splitting , 2018, Advanced materials.

[7]  K. Catchpole,et al.  Perovskite Photovoltaic Integrated CdS/TiO2 Photoanode for Unbiased Photoelectrochemical Hydrogen Generation. , 2018, ACS applied materials & interfaces.

[8]  H. Seo,et al.  Recent developments in photoelectrochemical water-splitting using WO 3 /BiVO 4 heterojunction photoanode: A review , 2018, Materials Science for Energy Technologies.

[9]  Zhifeng Liu,et al.  Enhanced photoelectrochemical water splitting performance of α-Fe2O3 nanostructures modified with Sb2S3 and cobalt phosphate , 2018 .

[10]  K. Domen,et al.  Recent Progress in the Surface Modification of Photoelectrodes toward Efficient and Stable Overall Water Splitting. , 2018, Chemistry.

[11]  Anders Hagfeldt,et al.  New-generation integrated devices based on dye-sensitized and perovskite solar cells , 2018 .

[12]  W. Shen,et al.  Pt nanoparticle decorated InP nanopore arrays for enhanced photoelectrochemical performance , 2018 .

[13]  F. G. Nogueira,et al.  Bismuth Vanadate Photoelectrodes with High Photovoltage as Photoanode and Photocathode in Photoelectrochemical Cells for Water Splitting. , 2018, ChemSusChem.

[14]  Zhifeng Liu,et al.  Enhanced Photoelectrochemical Water Splitting of Photoelectrode Simultaneous Decorated with Cocatalysts Based on Spatial Charge Separation and Transfer , 2018 .

[15]  K. Arifin,et al.  A new method for the fabrication of a bilayer WO3/Fe2O3 photoelectrode for enhanced photoelectrochemical performance , 2018 .

[16]  S. Ookawara,et al.  Influence of design and operating conditions on the performance of tandem photoelectrochemical reactors , 2018 .

[17]  Hao Tan,et al.  Highly ordered ZnO/ZnFe2O4 inverse opals with binder-free heterojunction interfaces for high-performance photoelectrochemical water splitting , 2018 .

[18]  K. Bevan,et al.  Simultaneously Solving the Photovoltage and Photocurrent at Semiconductor–Liquid Interfaces , 2018 .

[19]  Multiscale Computational Design of Functionalized Photocathodes for H2 Generation. , 2018, Journal of the American Chemical Society.

[20]  M. Grätzel,et al.  Analysis of Optical Losses in a Photoelectrochemical Cell: A Tool for Precise Absorptance Estimation , 2018 .

[21]  Dong Ma,et al.  Optoelectronic modeling of the Si/α-Fe 2 O 3 heterojunction photoanode , 2018 .

[22]  Kyoung-Shin Choi,et al.  Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition , 2018 .

[23]  Wee‐Jun Ong,et al.  Prospects of electrochemically synthesized hematite photoanodes for photoelectrochemical water splitting: A review , 2017 .

[24]  Kah-Yoong Chan,et al.  Recent advances in photo‐anode for dye‐sensitized solar cells: a review , 2017 .

[25]  Doudou Zhang,et al.  Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion. , 2017, ChemSusChem.

[26]  Yuxing Xu,et al.  Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels. , 2017, ChemSusChem.

[27]  N. Seriani Ab initio simulations of water splitting on hematite , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  G. Gary Wang,et al.  Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting , 2017 .

[29]  Thomas W. Hamann,et al.  Roadmap on solar water splitting: current status and future prospects , 2017 .

[30]  A. Rockett,et al.  Computational insights into charge transfer across functionalized semiconductor surfaces , 2017, Science and technology of advanced materials.

[31]  Panagiotis Lianos,et al.  Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen , 2017 .

[32]  I. Dincer,et al.  Thermodynamic analysis and experimental investigation of a unique photoelectrochemical hydrogen production system , 2017 .

[33]  K. Hellgardt,et al.  Membrane-less photoelectrochemical cells: product separation by hydrodynamic control , 2017 .

[34]  Hyungkyu Han,et al.  Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting - superior role of 1D nanoarchitectures and of combined heterostructures. , 2017, Chemical Society reviews.

[35]  Rohit Abraham John,et al.  Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water-Splitting Devices. , 2017, ChemSusChem.

[36]  T. Mallouk,et al.  Water splitting dye-sensitized solar cells , 2017 .

[37]  A. Hellman,et al.  First-Principles View on Photoelectrochemistry: Water-Splitting as Case Study , 2017 .

[38]  A. Rockett,et al.  Effect of Surface Coverage and Composition on the Stability and Interfacial Dipole of Functionalized Silicon , 2017 .

[39]  E. Reisner,et al.  Emerging approaches to stabilise photocorrodible electrodes and catalysts for solar fuel applications , 2017 .

[40]  P. Fornasiero,et al.  Photocatalytic Hydrogen Production: A Rift into the Future Energy Supply , 2017 .

[41]  N. Lewis,et al.  Evaluation of flow schemes for near-neutral pH electrolytes in solar-fuel generators , 2017 .

[42]  F. Abdi,et al.  Recent developments in complex metal oxide photoelectrodes , 2017 .

[43]  Á. Kukovecz,et al.  Photoelectrochemistry by Design: Tailoring the Nanoscale Structure of Pt/NiO Composites Leads to Enhanced Photoelectrochemical Hydrogen Evolution Performance , 2017, The journal of physical chemistry. C, Nanomaterials and interfaces.

[44]  Ib Chorkendorff,et al.  Strategies for stable water splitting via protected photoelectrodes. , 2017, Chemical Society reviews.

[45]  L. Kavan Electrochemistry and dye-sensitized solar cells , 2017 .

[46]  A. Ganguli,et al.  Interfacial Charge Transfer in Photoelectrochemical Processes , 2017 .

[47]  Y. Ping,et al.  Modelling heterogeneous interfaces for solar water splitting. , 2017, Nature materials.

[48]  Yinghua Zhang,et al.  A Cu2O/Cu2S-ZnO/CdS tandem photoelectrochemical cell for self-driven solar water splitting , 2017 .

[49]  Jinliang Xu,et al.  Plasmon-dominated photoelectrodes for solar water splitting , 2017 .

[50]  S. Haussener,et al.  Degradation in photoelectrochemical devices: review with an illustrative case study , 2017 .

[51]  G. Kelsall,et al.  From millimetres to metres: the critical role of current density distributions in photo-electrochemical reactor design , 2017 .

[52]  A. Rothschild,et al.  Beating the Efficiency of Photovoltaics-Powered Electrolysis with Tandem Cell Photoelectrolysis , 2017 .

[53]  F. Toma,et al.  Bismuth Vanadate as a Platform for Accelerating Discovery and Development of Complex Transition-Metal Oxide Photoanodes , 2017 .

[54]  Hyun Suk Jung,et al.  BiVO4/WO3/SnO2 Double-Heterojunction Photoanode with Enhanced Charge Separation and Visible-Transparency for Bias-Free Solar Water-Splitting with a Perovskite Solar Cell. , 2017, ACS applied materials & interfaces.

[55]  G. Rubio‐Bollinger,et al.  Strain-induced band gap engineering in layered TiS3 , 2017, Nano Research.

[56]  M. A. Shah,et al.  Fabrication of ZnFe2O4/TiO2 nanotube array composite to harness the augmented photocurrent density under visible light , 2017 .

[57]  Hongbing Ji,et al.  Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting , 2017 .

[58]  N. Russo,et al.  Recent Advances in the BiVO4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges , 2017 .

[59]  T. Meyer,et al.  A Dye-Sensitized Photoelectrochemical Tandem Cell for Light Driven Hydrogen Production from Water. , 2016, Journal of the American Chemical Society.

[60]  J. S. Lee,et al.  Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting , 2016, Nature Communications.

[61]  Photoelectrochemical properties of CdSe quantum dot sensitized p-type flower-like NiO solar cells with different deposition layer , 2016 .

[62]  Michael J. Rose,et al.  Charge-Transfer through Ultrathin Film TiO2 on n-Si(111) Photoelectrodes: Experimental and Theoretical Investigation of Electric Field-Enhanced Transport with a Nonaqueous Redox Couple , 2016 .

[63]  Guohua Liu,et al.  Charge Transport in Two-Photon Semiconducting Structures for Solar Fuels. , 2016, ChemSusChem.

[64]  Shaohua Shen,et al.  Towards efficient solar-to-hydrogen conversion: Fundamentals and recent progress in copper-based chalcogenide photocathodes , 2016 .

[65]  Peter Klaver,et al.  Oxygen evolution at hematite surfaces : the impact of structure and oxygen vacancies on lowering the overpotential , 2016 .

[66]  D. H. Wang,et al.  Water Splitting Progress in Tandem Devices: Moving Photolysis beyond Electrolysis , 2016 .

[67]  Matthew R. Shaner,et al.  A comparative technoeconomic analysis of renewable hydrogen production using solar energy , 2016 .

[68]  K. Domen,et al.  A Novel Photocathode Material for Sunlight‐Driven Overall Water Splitting: Solid Solution of ZnSe and Cu(In,Ga)Se2 , 2016 .

[69]  John Rick,et al.  Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. , 2016, Nanoscale horizons.

[70]  Seung Jae Oh,et al.  Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling , 2016, Nature Communications.

[71]  Anja Bieberle-Hütter,et al.  Modeling and Simulations in Photoelectrochemical Water Oxidation: From Single Level to Multiscale Modeling. , 2016, ChemSusChem.

[72]  Yi Cui,et al.  Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells , 2016, Science Advances.

[73]  I. Dincer,et al.  Simulation of transport phenomena in a photo-electrochemical reactor for solar hydrogen production , 2016 .

[74]  T. Moore,et al.  A tandem dye-sensitized photoelectrochemical cell for light driven hydrogen production , 2016 .

[75]  L. G. Bloor,et al.  Solar-Driven Water Oxidation and Decoupled Hydrogen Production Mediated by an Electron-Coupled-Proton Buffer , 2016, Journal of the American Chemical Society.

[76]  S. Leone,et al.  Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays. , 2016, ACS nano.

[77]  Zhifeng Liu,et al.  Novel WO3/Sb2S3 Heterojunction Photocatalyst Based on WO3 of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting. , 2016, ACS applied materials & interfaces.

[78]  S. Haussener,et al.  Utilizing modeling, experiments, and statistics for the analysis of water-splitting photoelectrodes , 2016 .

[79]  V. Smirnov,et al.  Light-induced degradation of adapted quadruple junction thin film silicon solar cells for photoelectrochemical water splitting , 2016 .

[80]  Z. Zou,et al.  Photoelectrochemical cell for unassisted overall solar water splitting using a BiVO4 photoanode and Si nanoarray photocathode , 2016 .

[81]  K. Sivula,et al.  Semiconducting materials for photoelectrochemical energy conversion , 2016 .

[82]  Tae Woo Kim,et al.  Improving Stability and Photoelectrochemical Performance of BiVO4 Photoanodes in Basic Media by Adding a ZnFe2O4 Layer. , 2016, The journal of physical chemistry letters.

[83]  Bernhard Kaiser,et al.  Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting , 2016 .

[84]  Juan Bisquert,et al.  Photoelectrochemical Solar Fuel Production , 2016 .

[85]  A. Rockett,et al.  Simulation of Charge Transport and Recombination across Functionalized Si(111) Photoelectrodes , 2016 .

[86]  Claudio Ampelli,et al.  Electrolyte-less design of PEC cells for solar fuels: Prospects and open issues in the development of cells and related catalytic electrodes , 2016 .

[87]  K. Domen,et al.  Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight. , 2016, ChemSusChem.

[88]  Jens K Nørskov,et al.  Materials for solar fuels and chemicals. , 2016, Nature materials.

[89]  S. Haussener,et al.  Integrated Photo-Electrochemical Solar Fuel Generators under Concentrated Irradiation I. 2-D Non-Isothermal Multi-Physics Modeling , 2016 .

[90]  S. Haussener,et al.  Integrated Photo-Electrochemical Solar Fuel Generators under Concentrated Irradiation II. Thermal Management a Crucial Design Consideration , 2016 .

[91]  E. Reisner,et al.  Multifunctional Coatings from Scalable Single Source Precursor Chemistry in Tandem Photoelectrochemical Water Splitting , 2015 .

[92]  Lydia Helena Wong,et al.  Targeting Ideal Dual‐Absorber Tandem Water Splitting Using Perovskite Photovoltaics and CuInxGa1‐xSe2 Photocathodes , 2015 .

[93]  M. Grätzel,et al.  Transparent Cuprous Oxide Photocathode Enabling a Stacked Tandem Cell for Unbiased Water Splitting , 2015 .

[94]  C. Plaisance,et al.  Structure Sensitivity of the Oxygen Evolution Reaction Catalyzed by Cobalt(II,III) Oxide. , 2015, Journal of the American Chemical Society.

[95]  Dong Suk Kim,et al.  Wireless Solar Water Splitting Device with Robust Cobalt-Catalyzed, Dual-Doped BiVO4 Photoanode and Perovskite Solar Cell in Tandem: A Dual Absorber Artificial Leaf. , 2015, ACS nano.

[96]  K. Domen,et al.  La5Ti2Cu1−xAgxS5O7 photocathodes operating at positive potentials during photoelectrochemical hydrogen evolution under irradiation of up to 710 nm , 2015 .

[97]  I. Dincer,et al.  Impact assessment and efficiency evaluation of hydrogen production methods , 2015 .

[98]  I. Dincer,et al.  Review and evaluation of hydrogen production methods for better sustainability , 2015 .

[99]  Bernhard Kaiser,et al.  Application and modeling of an integrated amorphous silicon tandem based device for solar water splitting , 2015 .

[100]  Zhaosheng Li,et al.  Solar fuel production: Strategies and new opportunities with nanostructures , 2015 .

[101]  Jens K Nørskov,et al.  Electrochemical Barriers Made Simple. , 2015, The journal of physical chemistry letters.

[102]  Ali Javey,et al.  Enabling unassisted solar water splitting by iron oxide and silicon , 2015, Nature Communications.

[103]  K. Sivula,et al.  Surface modification of semiconductor photoelectrodes. , 2015, Physical chemistry chemical physics : PCCP.

[104]  Takehiko Kitamori,et al.  Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency , 2015, Scientific Reports.

[105]  James L. Young,et al.  Phosphonic Acid Modification of GaInP2 Photocathodes Toward Unbiased Photoelectrochemical Water Splitting. , 2015, ACS applied materials & interfaces.

[106]  Mahesh Datt Bhatt,et al.  Recent theoretical progress in the development of photoanode materials for solar water splitting photoelectrochemical cells , 2015 .

[107]  B. Szyja,et al.  Synergy between TiO2 and Co(x)O(y) sites in electrocatalytic water decomposition. , 2015, Physical chemistry chemical physics : PCCP.

[108]  J. Barber,et al.  Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting. , 2015, Nano letters.

[109]  Gengfeng Zheng,et al.  High-performance perovskite photoanode enabled by Ni passivation and catalysis. , 2015, Nano letters.

[110]  Hwan-Kyu Kim,et al.  Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device , 2015 .

[111]  Ibrahim Dincer,et al.  A review on clean energy solutions for better sustainability , 2015 .

[112]  J. Dawlaty,et al.  Continuous Representation of the Proton and Electron Kinetic Parameters in the pH–Potential Space for Water Oxidation on Hematite , 2015 .

[113]  A. Kudo,et al.  Utilization of Metal Sulfide Material of (CuGa)(1-x)Zn(2x)S2 Solid Solution with Visible Light Response in Photocatalytic and Photoelectrochemical Solar Water Splitting Systems. , 2015, The journal of physical chemistry letters.

[114]  Ze Yu,et al.  Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components , 2015 .

[115]  W. Goddard,et al.  Optimizing the oxygen evolution reaction for electrochemical water oxidation by tuning solvent properties. , 2015, Nanoscale.

[116]  Zhifeng Liu,et al.  High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays , 2015 .

[117]  Chengxiang Xiang,et al.  Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. , 2015, ChemSusChem.

[118]  A. Dabirian,et al.  Light trapping in hematite-coated transparent particles for solar fuel generation , 2015 .

[119]  Jens K Nørskov,et al.  Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. , 2015, Journal of the American Chemical Society.

[120]  K. Delaney,et al.  First-principles calculations of indirect Auger recombination in nitride semiconductors , 2014, 1412.7555.

[121]  Martin Hangaard Hansen,et al.  Towards first principles modeling of electrochemical electrode-electrolyte interfaces , 2015 .

[122]  K. Sivula,et al.  Artificial Photosynthesis with Semiconductor-Liquid Junctions. , 2015, Chimia.

[123]  W. Jaegermann,et al.  Photoelectrochemical and photovoltaic characteristics of amorphous-silicon-based tandem cells as photocathodes for water splitting. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[124]  Dae Won Cho,et al.  Light-penetration and light-scattering effects in dye-sensitised solar cells , 2014 .

[125]  Luca Boarino,et al.  Monolithic cells for solar fuels. , 2014, Chemical Society reviews.

[126]  H. Atwater,et al.  Mesoscale modeling of photoelectrochemical devices: light absorption and carrier collection in monolithic, tandem, Si|WO3 microwires. , 2014, Optics Express.

[127]  F. Huo,et al.  Stable quantum dot photoelectrolysis cell for unassisted visible light solar water splitting. , 2014, ACS nano.

[128]  Rui Liu,et al.  Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells. , 2014, ChemSusChem.

[129]  I. Dincer,et al.  Analysis and assessment of a continuous-type hybrid photoelectrochemical system for hydrogen production , 2014 .

[130]  Leroy Cronin,et al.  Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting , 2014, Science.

[131]  K. Sun,et al.  Enabling silicon for solar-fuel production. , 2014, Chemical reviews.

[132]  L. Peter,et al.  Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[133]  Zhiliang Wang,et al.  Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode. , 2014, Physical chemistry chemical physics : PCCP.

[134]  Xi-hong Lu,et al.  Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation. , 2014, Nanoscale.

[135]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[136]  Harry A Atwater,et al.  Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation. , 2014, Optics Express.

[137]  I. Chorkendorff,et al.  Formation of a p–n heterojunction on GaP photocathodes for H2 production providing an open-circuit voltage of 710 mV , 2014 .

[138]  Kevin Sivula,et al.  A Bismuth Vanadate–Cuprous Oxide Tandem Cell for Overall Solar Water Splitting , 2014 .

[139]  Basile F. E. Curchod,et al.  Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. , 2014, Nature chemistry.

[140]  Hernán Míguez,et al.  Fully stable numerical calculations for finite one-dimensional structures: Mapping the transfer matrix method , 2014 .

[141]  Li Li,et al.  Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation. , 2014, Nano letters.

[142]  J. Newman,et al.  An Integrated 1-Dimensional Model of a Photoelectrochemical Cell for Water Splitting , 2014 .

[143]  J. S. Lee,et al.  Materials and Processes for Solar Fuel Production , 2014 .

[144]  Nathan S. Lewis,et al.  Modeling the Performance of an Integrated Photoelectrolysis System with 10 × Solar Concentrators , 2014 .

[145]  Joel W. Ager,et al.  Robust production of purified H2 in a stable, self-regulating, and continuously operating solar fuel generator , 2014 .

[146]  J. Halme,et al.  Dye sensitized solar cells as optically random photovoltaic media , 2014 .

[147]  Nathan S. Lewis,et al.  Modeling an integrated photoelectrolysis system sustained by water vapor , 2013 .

[148]  Nathan S. Lewis,et al.  Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems† , 2013 .

[149]  Christophe Ballif,et al.  Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. , 2013, Nano letters.

[150]  Roel van de Krol,et al.  Water-splitting catalysis and solar fuel devices: artificial leaves on the move. , 2013, Angewandte Chemie.

[151]  Nathan S. Lewis,et al.  An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems , 2013 .

[152]  L. Cronin,et al.  A bio-inspired, small molecule electron-coupled-proton buffer for decoupling the half-reactions of electrolytic water splitting. , 2013, Journal of the American Chemical Society.

[153]  Hao Ming Chen,et al.  Plasmon-enhanced near-infrared-active materials in photoelectrochemical water splitting. , 2013, Chemical communications.

[154]  Miro Zeman,et al.  Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode , 2013, Nature Communications.

[155]  H. Atwater,et al.  Optoelectronic analysis of multijunction wire array solar cells , 2013 .

[156]  Xuejin Li,et al.  Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination. , 2013, ChemSusChem.

[157]  E. Garnett,et al.  Extreme light absorption in thin semiconductor films wrapped around metal nanowires. , 2013, Nano letters.

[158]  B. Liu,et al.  A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. , 2013, Nano letters.

[159]  L. Cronin,et al.  Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. , 2013, Nature chemistry.

[160]  T. Kajino,et al.  Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes , 2013 .

[161]  Ji-Beom Yoo,et al.  Photoelectrochemical cell/dye-sensitized solar cell tandem water splitting systems with transparent and vertically aligned quantum dot sensitized TiO2 nanorod arrays , 2013 .

[162]  E. Carter,et al.  New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. , 2013, Chemical Society Reviews.

[163]  Y. Ping,et al.  Electronic excitations in light absorbers for photoelectrochemical energy conversion: first principles calculations based on many body perturbation theory. , 2013, Chemical Society reviews.

[164]  Frank E. Osterloh,et al.  Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. , 2013, Chemical Society reviews.

[165]  Scaling with Ohm's Law; Wired vs. Wireless Photoelectrochemical Cells , 2013 .

[166]  Jan Augustynski,et al.  Highly efficient water splitting by a dual-absorber tandem cell , 2012, Nature Photonics.

[167]  Nathan S. Lewis,et al.  Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems , 2012 .

[168]  S. Haque,et al.  Sensitization of TiO2 with PbSe Quantum Dots by SILAR: How Mercaptophenol Improves Charge Separation , 2012 .

[169]  Dehua Xiong,et al.  Recent progress on tandem structured dye-sensitized solar cells , 2012 .

[170]  Yu-Lun Chueh,et al.  p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. , 2012, Angewandte Chemie.

[171]  J. Yates,et al.  Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. , 2012, Chemical reviews.

[172]  E. Carter,et al.  Hole transport in pure and doped hematite , 2012 .

[173]  J. Halme,et al.  Effect of diffuse light scattering designs on the efficiency of dye solar cells: An integral optical and electrical description , 2012 .

[174]  A. Fujishima,et al.  Theoretical Kinetic Analysis of Heterogeneous Photocatalysis by TiO2 Nanotube Arrays: the Effects of Nanotube Geometry on Photocatalytic Activity , 2012 .

[175]  S. Louie,et al.  Phonon-assisted optical absorption in silicon from first principles. , 2012, Physical review letters.

[176]  Zachary W. Ulissi,et al.  Modelling and development of photoelectrochemical reactor for H2 production , 2012 .

[177]  R. Krol Principles of Photoelectrochemical Cells , 2012 .

[178]  T. Lana-Villarreal,et al.  Effect of surface fluorination on the electrochemical and photoelectrocatalytic properties of nanoporous titanium dioxide electrodes. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[179]  D. Nocera,et al.  Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts , 2011, Science.

[180]  K. Hellgardt,et al.  Evaluation and Modeling of a Photo-Electrochemical Reactor for Hydrogen Production Operating under High Photon Flux , 2011 .

[181]  Xiujian Zhao,et al.  Theoretical Kinetic Analysis of Heterogeneous Photocatalysis: The Effects of Surface Trapping and Bulk Recombination through Defects , 2011 .

[182]  Ib Chorkendorff,et al.  Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. , 2011, Nature materials.

[183]  Nathan S Lewis,et al.  Photoelectrochemical hydrogen evolution using Si microwire arrays. , 2011, Journal of the American Chemical Society.

[184]  Bruce A. Parkinson,et al.  Recent developments in solar water-splitting photocatalysis , 2011 .

[185]  Helena Ribeiro,et al.  Transient phenomenological modeling of photoelectrochemical cells for water splitting Application , 2011 .

[186]  John A. Turner,et al.  Characterization of Hematite Thin Films for Photoelectrochemical Water Splitting in a Dual Photoelectrode Device , 2010 .

[187]  Anders Hagfeldt,et al.  A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2. , 2010, Chemical communications.

[188]  Thomas Bligaard,et al.  Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations , 2010 .

[189]  Zhi-Pan Liu,et al.  Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings. , 2010, Journal of the American Chemical Society.

[190]  Makoto Konagai,et al.  Photoelectrochemical water splitting using a Cu(In,Ga)Se2 thin film , 2010 .

[191]  W. R. Daud,et al.  An overview of photocells and photoreactors for photoelectrochemical water splitting , 2010 .

[192]  Xiujian Zhao,et al.  A kinetic model for evaluating the dependence of the quantum yield of nano-TiO2 based photocatalysis on light intensity, grain size, carrier lifetime, and minority carrier diffusion coefficient: Indirect interfacial charge transfer , 2010 .

[193]  A. Javey,et al.  Design constraints and guidelines for CdS/CdTe nanopillar based photovoltaics , 2010 .

[194]  J. Durrant,et al.  Electron Diffusion Length in Mesoporous Nanocrystalline TiO2 Photoelectrodes during Water Oxidation , 2010 .

[195]  Michael Eikerling,et al.  Ab initio study of oxygen reduction mechanism at Pt(4) cluster. , 2010, Physical chemistry chemical physics : PCCP.

[196]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.

[197]  Thomas F. Jaramillo,et al.  Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols , 2010 .

[198]  Jun-Ho Yum,et al.  Examining architectures of photoanode–photovoltaic tandem cells for solar water splitting , 2010 .

[199]  Helmut Tributsch,et al.  TiO2-Protected Photoelectrochemical Tandem Cu(In,Ga)Se2 Thin Film Membrane for Light-Induced Water Splitting and Hydrogen Evolution , 2009 .

[200]  M. Di Vece,et al.  SiC: a photocathode for water splitting and hydrogen storage. , 2009, Angewandte Chemie.

[201]  E. McFarland,et al.  Improved photoelectrochemical performance of Ti-doped alpha-Fe2O3 thin films by surface modification with fluoride. , 2009, Chemical communications.

[202]  G. Kroes,et al.  First principles study of the photo-oxidation of water on tungsten trioxide (WO3). , 2009, The Journal of chemical physics.

[203]  P. Würfel,et al.  Physics of solar cells : from basic principles to advanced concepts , 2009 .

[204]  Egill Skúlason,et al.  Modeling the electrified solid-liquid interface , 2008 .

[205]  J. Nørskov,et al.  Oxidation and Photo-Oxidation of Water on TiO2 Surface , 2008 .

[206]  C. Grimes,et al.  P-type Cu--Ti--O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. , 2008, Nano letters.

[207]  P. Kulesza,et al.  Metal oxide photoanodes for solar hydrogen production , 2008 .

[208]  Heli Wang,et al.  Direct Water Splitting under Visible Light with Nanostructured Hematite and WO3 Photoanodes and a GaInP2 Photocathode , 2008 .

[209]  R. Gómez,et al.  Electrochemical Method for Studying the Kinetics of Electron Recombination and Transfer Reactions in Heterogeneous Photocatalysis: The Effect of Fluorination on TiO2 Nanoporous Layers , 2008 .

[210]  Stuart Licht,et al.  Solar hydrogen generation : toward a renewable energy future , 2008 .

[211]  S. Kerisit,et al.  Kinetic Monte Carlo model of charge transport in hematite (α-Fe2O3) , 2007 .

[212]  J. Nørskov,et al.  Electrolysis of water on oxide surfaces , 2007 .

[213]  Walter R. Duncan,et al.  Time-domain ab initio study of charge relaxation and recombination in dye-sensitized TiO2. , 2007, Journal of the American Chemical Society.

[214]  Nelson A. Kelly,et al.  Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting , 2006 .

[215]  Nikos Kopidakis,et al.  Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: evidence for surface passivation. , 2006, The journal of physical chemistry. B.

[216]  W. Ingler,et al.  A self-driven p/n-Fe2O3 tandem photoelectrochemical cell for water splitting , 2006 .

[217]  Lei Yang,et al.  Computer simulations of light scattering and mass transport of dye-sensitized nanocrystalline solar cells , 2006 .

[218]  Allen J. Bard,et al.  Photoelectrochemical Tandem Cell with Bipolar Dye-Sensitized Electrodes for Vectorial Electron Transfer for Water Splitting , 2006 .

[219]  M. Trari,et al.  p-Type CuYO2 as hydrogen photocathode , 2006 .

[220]  R. Rocheleau,et al.  Optimization of Hybrid Photoelectrodes for Solar Water-Splitting , 2005 .

[221]  J. Bisquert,et al.  Photoelectrochemical behavior of nanostructured TiO(2) thin-film electrodes in contact with aqueous electrolytes containing dissolved pollutants: a model for distinguishing between direct and indirect interfacial hole transfer from photocurrent measurements. , 2005, The journal of physical chemistry. B.

[222]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. , 2004, The journal of physical chemistry. B.

[223]  M. Neumann-Spallart,et al.  Semiconductor Photooxidation of Pollutants Dissolved in Water: A Kinetic Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer. I. Photoelectrochemical Experiments with Polycrystalline Anatase Electrodes under Current Doubling and Absence of Recombination , 2004 .

[224]  R. Rocheleau,et al.  Design considerations for a hybrid amorphous silicon/photoelectrochemical multijunction cell for hydrogen production , 2003 .

[225]  Anna N. Ivanovskaya,et al.  A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis , 2003 .

[226]  Tetsuo Soga,et al.  Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting , 2001 .

[227]  Stuart Licht,et al.  Efficient Solar Water Splitting, Exemplified by RuO2-Catalyzed AlGaAs/Si Photoelectrolysis , 2000 .

[228]  Shyam S. Kocha,et al.  Photoelectrochemical decomposition of water using modified monolithic tandem cells fn2 fn2 Presented , 1999 .

[229]  Photoelectrochemical decomposition of water utilizing monolithic tandem cells , 1998 .

[230]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[231]  Eric L. Miller,et al.  High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes , 1998 .

[232]  Yasumichi Matsumoto,et al.  New photocathode materials for hydrogen evolution: calcium iron oxide (CaFe2O4) and strontium iron oxide (Sr7Fe10O22) , 1987 .

[233]  J. O'm. Bockris,et al.  Significant Efficiency Increase in Self‐Driven Photoelectrochemical Cell for Water Photoelectrolysis , 1987 .

[234]  G Gouesbet,et al.  Four-flux models to solve the scattering transfer equation: special cases. , 1986, Applied optics.

[235]  G Gouesbet,et al.  Four-flux models to solve the scattering transfer equation in terms of Lorenz-Mie parameters. , 1984, Applied optics.

[236]  G. Somorjai,et al.  The preparation and selected properties of Mg-doped p-type iron oxide as a photocathode for the photoelectrolysis of water using visible light , 1983 .

[237]  D. J. Harrison,et al.  Electrochemical characterization of p-type semiconducting tungsten disulfide photocathodes: efficient photoreduction processes at semiconductor/liquid electrolyte interfaces , 1983 .

[238]  N. Lewis,et al.  Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes , 1982 .

[239]  H. Gerischer Photodecomposition of semiconductors thermodynamics, kinetics and application to solar cells , 1980 .

[240]  J. Bockris,et al.  Stable photoelectrochemical cells for the splitting of water , 1977, Nature.

[241]  Arthur J. Nozik,et al.  p‐n photoelectrolysis cells , 1976 .

[242]  Hideo Tamura,et al.  A Photo-electochemical cell with production of hydrogen and oxygen by a cell reaction , 1975 .

[243]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.