L Ranked Set Sampling: A Generalization Procedure for Robust Visual Sampling

In this article, a robust ranked set sampling (LRSS) scheme for estimating population mean is introduced. The proposed method is a generalization for many types of ranked set sampling that introduced in the literature for estimating the population mean. It is shown that the LRSS method gives unbiased estimator for the population mean with minimum variance providing that the underlying distribution is symmetric. However, for skewed distributions a weighted mean is given, where the optimal weights is computed by using Shannon's entropy. The performance of the population mean estimator is discussed along with its properties. Monte Carlo comparisons for detecting outliers are made with the traditional simple random sample and the ranked set sampling for some distributions. The results indicate that the LRSS estimator is superior alternative to the existing methods.