Performance of Discrete-Fourier-Transform-Based Velocity Estimators for a Wind-Sensing Coherent Doppler Lidar System in the Kolmogorov Turbulence Regime

The performance of discrete-Fourier-transform (DFT)-based velocity estimators for wind-sensing coherent Doppler lidar systems in the Kolmogorov turbulence regime is summarized using Monte Carlo simulations. Furthermore, a signal model, a simulation procedure, velocity estimators, and simulation conditions are explained. The relationships between signal-to-noise ratio, line-of-sight velocity estimation precision, and signal detection probability are simulated and summarized. In addition to the basic DFT estimator, signal matching estimators which utilize DFT are studied. The performances in the Kolmogorov turbulence regime and those in the Gaussian autocovariance signal model are compared. The performances are compared for wavelength regions of 1.5, 2, and 10 mum.

[1]  J G Hawley,et al.  Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 νm. , 1996, Applied optics.

[2]  Rod Frehlich,et al.  Effects of Wind Turbulence on Coherent Doppler Lidar Performance , 1997 .

[3]  Rod Frehlich,et al.  Performance of Mean-Frequency Estimators for Doppler Radar and Lidar , 1994 .

[4]  Rod Frehlich,et al.  Velocity Error for Coherent Doppler Lidar with Pulse Accumulation , 2004 .

[5]  J W Bilbro,et al.  Airborne Doppler lidar measurements. , 1986, Applied optics.

[6]  R. Michael Hardesty,et al.  Remote Sensing Velocities Using Coherent Laser of Atmospheric Wind Solid-state and CO2 Systems , 1996 .

[7]  Michael Harris,et al.  Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications. , 2002, Applied optics.

[8]  R. Frehlich,et al.  Coherent laser radar performance for general atmospheric refractive turbulence. , 1991, Applied optics.

[9]  R. Hardesty Performance of a Discrete Spectral Peak Frequency Estimator for Doppler Wind Velocity Measurements , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[10]  M. Kavaya,et al.  Continuous wave coherent laser radar: calculation of measurement location and volume. , 1991, Applied optics.

[11]  R. Frehlich,et al.  Coherent Doppler lidar signal spectrum with wind turbulence. , 1999, Applied optics.

[12]  Rod Frehlich Comparison of 2- and 10-µm Coherent Doppler Lidar Performance , 1995 .

[13]  R. L. Bowles,et al.  Coherent lidar airborne windshear sensor: performance evaluation. , 1991, Applied optics.

[14]  Y. Hirano,et al.  Compact all-fiber pulsed coherent Doppler lidar system for wind sensing. , 2007, Applied optics.

[15]  J. Spinhirne,et al.  Wavelength Dependence of Backscatter by use of Aerosol Microphysics and Lidar Data Sets: Application to 2.1- mum Wavelength for Space-Based and Airborne Lidars. , 2001, Applied optics.

[16]  T R Lawrence,et al.  Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar. , 1984, Applied optics.

[17]  Harold R. Bagley,et al.  Airborne Doppler lidar turbulence detection: ACLAIM flight test results , 1999, Defense, Security, and Sensing.

[18]  J. A. L. Thomson,et al.  Laser-Doppler system for detection of aircraft trailing vortices , 1970 .

[19]  Rod Frehlich Cramer-Rao bound for Gaussian random processes and applications to radar processing of atmospheric signals , 1993, IEEE Trans. Geosci. Remote. Sens..

[20]  Sammy W. Henderson,et al.  Coherent laser radar at 2 μm using solid-state lasers , 1993, IEEE Trans. Geosci. Remote. Sens..

[21]  B. J. Rye,et al.  Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound , 1993, IEEE Trans. Geosci. Remote. Sens..

[22]  B. J. Rye,et al.  Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation , 1993, IEEE Trans. Geosci. Remote. Sens..

[23]  S. Henderson,et al.  Eye-safe coherent laser radar system at 2.1 microm using Tm,Ho:YAG lasers. , 1991, Optics letters.

[24]  D Letalick,et al.  All-Fiber Multifunction Continuous-Wave Coherent Laser Radar at 1.55 num for Range, Speed, Vibration, and Wind Measurements. , 2000, Applied optics.

[25]  J. M. Vaughan,et al.  Coherent laser radar in Europe , 1996, Proc. IEEE.

[26]  Rod Frehlich Simulation of Coherent Doppler Lidar Performance in the Weak-Signal Regime , 1996 .

[27]  B. J. Rye,et al.  Optimal truncation and optical efficiency of an apertured coherent lidar focused on an incoherent backscatter target. , 1992, Applied optics.

[28]  S. Henderson,et al.  Eye-safe coherent laser radar system at 2.1μm using Tm, Ho:YAG lasers , 1991 .

[29]  James W. Bilbro,et al.  Airborne Doppler Lidar Wind Field Measurements , 1984, Topical Meeting on Optical Remote Sensing of the Atmosphere.