Pictures of complete positivity in arbitrary dimension

Two fundamental contributions to categorical quantum mechanics are presented. First, we generalize the CP-construction, that turns any dagger compact category into one with completely positive maps, to arbitrary dimension. Second, we axiomatize when a given category is the result of this construction.

[1]  Bob Coecke,et al.  POVMs and Naimark's Theorem Without Sums , 2006, QPL.

[2]  W. Stinespring Positive functions on *-algebras , 1955 .

[3]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[4]  Bob Coecke,et al.  Axiomatic Description of Mixed States From Selinger's CPM-construction , 2008, QPL.

[5]  G. M. Kelly Many-variable functorial calculus. I. , 1972 .

[6]  J. Dixmier,et al.  Von Neumann Algebras , 1981 .

[7]  Dusko Pavlovic,et al.  Quantum measurements without sums , 2007 .

[8]  Chris Heunen,et al.  An embedding theorem for Hilbert categories , 2008, 0811.1448.

[9]  Sergio Boixo,et al.  Completely positive classical structures and sequentializable quantum protocols , 2012, 1210.0616.

[10]  Bob Coecke,et al.  De-linearizing Linearity: Projective Quantum Axiomatics From Strong Compact Closure , 2005, QPL.

[11]  Bart Jacobs,et al.  Quantum Logic in Dagger Kernel Categories , 2009, QPL@MFPS.

[12]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[13]  P. Halmos Naive Set Theory , 1961 .

[14]  B. Coecke,et al.  Classical and quantum structuralism , 2009, 0904.1997.

[15]  P. Panangaden,et al.  Nuclear and trace ideals in tensored-categories , 1998, math/9805102.

[16]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[17]  A. Holevo Statistical structure of quantum theory , 2001 .

[18]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, LICS 2004.

[19]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[20]  Simon Perdrix,et al.  Environment and Classical Channels in Categorical Quantum Mechanics , 2010, CSL.

[21]  B. Coecke,et al.  Categories for the practising physicist , 2009, 0905.3010.

[22]  Ross Street,et al.  Braided Tensor Categories , 1993 .

[23]  Chris Heunen,et al.  Compactly Accessible Categories and Quantum Key Distribution , 2008, Log. Methods Comput. Sci..

[24]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[25]  B. Blackadar,et al.  Operator Algebras: Theory of C*-Algebras and von Neumann Algebras , 2005 .

[26]  J. Conway A course in operator theory , 1999 .