Influence of hydrated lime on mechanical and shrinkage properties of alkali-activated slag cement

[1]  L. Tang,et al.  Shrinkage behaviour, early hydration and hardened properties of sodium silicate activated slag incorporated with gypsum and cement , 2020 .

[2]  F. Crea,et al.  The combined use of admixtures for shrinkage reduction in one-part alkali activated slag-based mortars and pastes , 2020 .

[3]  Sulapha Peethamparan,et al.  Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods , 2018, Cement and Concrete Research.

[4]  Kai Yang,et al.  Effect of Ca(OH)2 on shrinkage characteristics and microstructures of alkali-activated slag concrete , 2018 .

[5]  Mingzhong Zhang,et al.  Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature , 2018 .

[6]  Mingzhong Zhang,et al.  Mechanisms of autogenous shrinkage of alkali-activated fly ash-slag pastes cured at ambient temperature within 24 h , 2018 .

[7]  Zhengming Sun,et al.  Hydration products, internal relative humidity and drying shrinkage of alkali activated slag mortar with expansion agents , 2018 .

[8]  Hailong Ye,et al.  Shrinkage mitigation strategies in alkali-activated slag , 2017 .

[9]  H. Brouwers,et al.  Autogenous and drying shrinkage of sodium carbonate activated slag altered by limestone powder incorporation , 2017 .

[10]  Khalid Zaman,et al.  Energy consumption, carbon dioxide emissions and economic development: Evaluating alternative and plausible environmental hypothesis for sustainable growth , 2017 .

[11]  Hailong Ye,et al.  Shrinkage mechanisms of alkali-activated slag , 2016 .

[12]  J. Provis,et al.  Advances in understanding alkali-activated materials , 2015 .

[13]  Hjh Jos Brouwers,et al.  Properties of alkali activated slag-fly ash blends with limestone addition , 2015 .

[14]  A. Al-Tabbaa,et al.  Strength and drying shrinkage of slag paste activated by sodium carbonate and reactive MgO , 2015 .

[15]  J. Dai,et al.  Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes , 2015 .

[16]  Haeng-Ki Lee,et al.  Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages , 2014 .

[17]  Wei Chen,et al.  Shrinkage compensation of alkali-activated slag concrete and microstructural analysis , 2014 .

[18]  Alaa M. Rashad,et al.  A comprehensive overview about the influence of different additives on the properties of alkali-activated slag – A guide for Civil Engineer , 2013 .

[19]  D. Bentz,et al.  Mitigation of autogenous shrinkage in alkali activated slag mortars by internal curing , 2013 .

[20]  S. Aydın A ternary optimisation of mineral additives of alkali activated cement mortars , 2013 .

[21]  John L. Provis,et al.  Drying-induced changes in the structure of alkali-activated pastes , 2013, Journal of Materials Science.

[22]  Keun-Hyeok Yang,et al.  Hydration products and strength development of calcium hydroxide-based alkali-activated slag mortars , 2012 .

[23]  Keun-Hyeok Yang,et al.  Effect of water–binder ratio on the mechanical properties of calcium hydroxide-based alkali-activated slag concrete , 2012 .

[24]  Hamlin M. Jennings,et al.  Density and water content of nanoscale solid C–S–H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage , 2012 .

[25]  M. Barsoum,et al.  Chemical and Microstructural Characterization of 20‐Month‐Old Alkali‐Activated Slag Cements , 2010 .

[26]  Gilles Chanvillard,et al.  A Coupled Nanoindentation/SEM‐EDS Study on Low Water/Cement Ratio Portland Cement Paste: Evidence for C–S–H/Ca(OH)2 Nanocomposites , 2010 .

[27]  M. A. Cincotto,et al.  Mechanical properties, drying and autogenous shrinkage of blast furnace slag activated with hydrated lime and gypsum , 2010 .

[28]  Keun-Hyeok Yang,et al.  Enhancement of reactivity of calcium hydroxide-activated slag mortars by the addition of barium hydroxide , 2010 .

[29]  Paulo J.M. Monteiro,et al.  The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers , 2010 .

[30]  H. Manzano,et al.  Elastic properties of the main species present in Portland cement pastes , 2009 .

[31]  P. Monteiro,et al.  Investigation of early growth of calcium hydroxide crystals in cement solution by soft X-ray transmission microscopy , 2009 .

[32]  Gaurav Sant,et al.  Interactions between shrinkage reducing admixtures (SRA) and cement paste's pore solution , 2008 .

[33]  Wellington Longuini Repette,et al.  Drying and autogenous shrinkage of pastes and mortars with activated slag cement , 2008 .

[34]  Konstantin Kovler,et al.  Overview and Future Trends of Shrinkage Research , 2006 .

[35]  Asterios Bakolas,et al.  Evaluation of pozzolanic activity and physicomechanical characteristics in metakaolin-lime pastes , 2006 .

[36]  J. I. Escalante-García,et al.  Hydration Products and Reactivity of Blast‐Furnace Slag Activated by Various Alkalis , 2003 .

[37]  K. Scrivener,et al.  29Si and 27Al NMR study of alkali-activated slag , 2003 .

[38]  C. Shi,et al.  Alkali-Activated Cements and Concretes , 2003 .

[39]  Darko Krizan,et al.  Effects of dosage and modulus of water glass on early hydration of alkali–slag cements , 2002 .

[40]  A. Atkinson,et al.  Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure , 2002 .

[41]  D. Bentz,et al.  Shrinkage-reducing admixtures and early-age desiccation in cement pastes and mortars , 2001 .

[42]  Wei Sun,et al.  Hydration of high-volume fly ash cement pastes , 2000 .

[43]  S. Martínez-Ramírez,et al.  Alkali-activated fly ash/slag cements: Strength behaviour and hydration products , 2000 .

[44]  Frank Collins,et al.  Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete , 2000 .

[45]  Jay G. Sanjayan,et al.  Effect of admixtures on properties of alkali-activated slag concrete , 2000 .

[46]  D. Bentz,et al.  Protected paste volume in concrete: Extension to internal curing using saturated lightweight fine aggregate , 1999 .

[47]  J. Sanjayan,et al.  Effect of elevated temperature curing on properties of alkali-activated slag concrete , 1999 .

[48]  J. Sanjayan,et al.  Strength and shrinkage properties of alkali-activated slag concrete placed into a large column , 1999 .

[49]  Jay G. Sanjayan,et al.  Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate , 1999 .

[50]  J. Sanjayan,et al.  Workability and mechanical properties of alkali activated slag concrete , 1999 .

[51]  Jay G. Sanjayan,et al.  Early age strength and workability of slag pastes activated by NaOH and Na2CO3 , 1998 .

[52]  C. Nmai,et al.  Shrinkage-Reducing Admixtures , 1998 .

[53]  P. L. Pratt,et al.  Alkali-activated slag cement and concrete: a review of properties and problems , 1995 .

[54]  K. Scrivener,et al.  Hydration products of alkali activated slag cement , 1995 .

[55]  S. Sarkar,et al.  A study of rheological and mechanical properties of mixed alkali activated slag pastes , 1994 .

[56]  D. Roy,et al.  Early activation and properties of slag cement , 1990 .

[57]  S. Diamond,et al.  Investigation of the composition and morphology of individual particles of portland cement paste: 1. CSH gel and calcium hydroxide particles , 1983 .

[58]  R. Thomas,et al.  On drying shrinkage in alkali-activated concrete: Improving dimensional stability by aging or heat-curing , 2017 .

[59]  Keun-Hyeok Yang,et al.  Assessment of CO2 reduction of alkali-activated concrete , 2013 .

[60]  V. Rose,et al.  Evolution of binder structure in sodium silicate-activated slag-metakaolin blends , 2011 .

[61]  Cengiz Duran Atiş,et al.  Influence of Activator on the Strength and Drying Shrinkage of Alkali-Activated Slag Mortar , 2009 .

[62]  R. Cloots,et al.  (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement , 2006 .

[63]  R. Frost,et al.  DSC and high-resolution TG of synthesized hydrotalcites of Mg and Zn , 2003 .

[64]  H. Jennings,et al.  Hydration of alkali-activated ground granulated blast furnace slag , 2000 .

[65]  Jay G. Sanjayan,et al.  Alkali activation of Australian slag cements , 1999 .