Highly stable skyrmion state in helimagnetic MnSi nanowires.

Topologically stable magnetic skyrmions realized in B20 metal silicide or germanide compounds with helimagnetic order are very promising for magnetic memory and logic devices. However, these applications are hindered because the skyrmions only survive in a small temperature-field (T-H) pocket near the critical temperature Tc in bulk materials. Here we demonstrate that the skyrmion state in helimagnetic MnSi nanowires with varied sizes from 400 to 250 nm can exist in a substantially extended T-H region. Magnetoresistance measurements under a moderate external magnetic field along the long axis of the nanowires (H∥) show transitions corresponding to the skyrmion state from Tc ∼32 K down to at least 3 K, the lowest temperature in our measurement. When the field is applied perpendicular to the wire axis (H⊥), the skyrmion state was not resolvable using the magnetoresistance measurements. Our analysis suggests that the shape-induced uniaxial anisotropy might be responsible for the stabilization of skyrmion state observed in nanowires.

[1]  T. Wolf,et al.  Large enhancement of emergent magnetic fields in MnSi with impurities and pressure , 2013, 1401.3680.

[2]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[3]  Y. Tokura,et al.  Observation of the magnetic skyrmion lattice in a MnSi nanowire by Lorentz TEM. , 2013, Nano letters.

[4]  Song Jin,et al.  A general method to measure the Hall effect in nanowires: examples of FeS2 and MnSi. , 2013, Nano letters.

[5]  C. Pfleiderer,et al.  Giant generic topological Hall resistivity of MnSi under pressure , 2013, 1404.3734.

[6]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[7]  A. N. Bogdanov,et al.  Three-dimensional skyrmion states in thin films of cubic helimagnets , 2012, 1212.5970.

[8]  S. M. Stishov,et al.  Phase diagram of the itinerant helimagnet MnSi from high-pressure resistivity measurements and the quantum criticality problem , 2012 .

[9]  U. Rößler,et al.  Extended elliptic skyrmion gratings in epitaxial MnSi thin films , 2012, 1210.1440.

[10]  V. Dyadkin,et al.  Magnetic ordering in bulk MnSi crystals with chemically induced negative pressure , 2012 .

[11]  H. Ohno,et al.  Current-induced torques in magnetic materials. , 2012, Nature materials.

[12]  T. Matsuda,et al.  Real-space observation of skyrmion lattice in helimagnet MnSi thin samples. , 2012, Nano letters.

[13]  Y. Tokura,et al.  Skyrmion flow near room temperature in an ultralow current density , 2012, Nature Communications.

[14]  Andrew L. Schmitt,et al.  Spin polarization measurement of homogeneously doped Fe(1-x)Co(x)Si nanowires by Andreev reflection spectroscopy. , 2011, Nano letters.

[15]  Y. Tokura,et al.  Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. , 2011, Nature materials.

[16]  P. Böni,et al.  Spin Transfer Torques in MnSi at Ultralow Current Densities , 2010, Science.

[17]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[18]  Yang-Kyu Choi,et al.  Itinerant helimagnetic single-crystalline MnSi nanowires. , 2010, ACS nano.

[19]  Ruihua Ding,et al.  Signature of helimagnetic ordering in single-crystal MnSi nanowires. , 2010, Nano letters.

[20]  U. Rößler,et al.  Stabilization of skyrmion textures by uniaxial distortions in noncentrosymmetric cubic helimagnets , 2009, 0904.4842.

[21]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[22]  Y. Tokura,et al.  Unusual Hall effect anomaly in MnSi under pressure. , 2008, Physical review letters.

[23]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[24]  Andrew L. Schmitt,et al.  Single-Crystal Semiconducting Chromium Disilicide Nanowires Synthesized via Chemical Vapor Transport , 2007 .

[25]  C. Pfleiderer,et al.  Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.

[26]  R. Cowburn,et al.  Domain wall propagation in magnetic nanowires by spin-polarized current injection , 2003, cond-mat/0304549.

[27]  T. Sakakibara,et al.  Magnetization and Magnetoresistance of MnSi. II , 1982 .

[28]  K. Kadowaki,et al.  Electron Spin Resonance in the Itinerant-Electron Helical Magnet MnSi , 1977 .