Inverse problem methods for generalized fractal transforms

[1]  O. Gaans Probability measures on metric spaces , 2022 .

[2]  Edward R. Vrscay,et al.  Iterated fuzzy set systems: A new approach to the inverse problem for fractals and other sets , 1992 .

[3]  Benoît Simon Explicit link between local fractal transform and multiresolution transform , 1995, Proceedings., International Conference on Image Processing.

[4]  Edward R. Vrscay,et al.  Theory of Generalized Fractal Transforms , 1996 .

[5]  D. Malah,et al.  Fractal representation of images via the discrete wavelet transform , 1995, Eighteenth Convention of Electrical and Electronics Engineers in Israel.

[6]  Yuval Fisher Fractal Image Compression , 1994 .

[7]  Edwin Hewitt,et al.  Real And Abstract Analysis , 1967 .

[8]  Edward R. Vrscay,et al.  Solving the inverse problem for measures using iterated function systems: a new approach , 1995, Advances in Applied Probability.

[9]  Michael J. Best,et al.  Equivalence of some quadratic programming algorithms , 1984, Math. Program..

[10]  Michael J. Best,et al.  A quadratic programming algorithm , 1988, ZOR Methods Model. Oper. Res..

[11]  Donald M. Monro,et al.  RATE/DISTORTION PERFORMANCE OF FRACTAL TRANSFORMS FOR IMAGE COMPRESSION , 1994 .

[12]  Y. Fisher Fractal image compression: theory and application , 1995 .

[13]  Arnaud E. Jacquin,et al.  Image coding based on a fractal theory of iterated contractive image transformations , 1992, IEEE Trans. Image Process..

[14]  Edward R. Vrscay,et al.  Solving The Inverse Problem For Function/image Approximation Using Iterated Function Systems Ii. Alg , 1994 .

[15]  M. Victor Wickerhauser,et al.  Adapted wavelet analysis from theory to software , 1994 .

[16]  Donald M. Monro,et al.  A hybrid fractal transform , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[17]  G. Vines Orthogonal basis IFS , 1995 .

[18]  M. Barnsley,et al.  Iterated function systems and the global construction of fractals , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[20]  Y. Fisher,et al.  Image compression: A study of the iterated transform method , 1992, Signal Process..

[21]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  G. Davis,et al.  Self-quantized wavelet subtrees: a wavelet-based theory for fractal image compression , 1995, Proceedings DCC '95 Data Compression Conference.

[23]  Lyman P. Hurd,et al.  Fractal image compression , 1993 .

[24]  Donald M. Monro,et al.  Fractal block coding of images , 1992 .

[25]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[26]  P. Kloeden,et al.  Metric spaces of fuzzy sets , 1990 .

[27]  Edward R. Vrscay,et al.  SOLVING THE INVERSE PROBLEM FOR FUNCTION/IMAGE APPROXIMATION USING ITERATED FUNCTION SYSTEMS I: THEORETICAL BASIS , 1994 .