Otto Warburg's contributions to current concepts of cancer metabolism

[1]  T. Mak,et al.  Regulation of cancer cell metabolism , 2011, Nature Reviews Cancer.

[2]  Bin Wang,et al.  Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. , 2011, Cancer cell.

[3]  J. Licht,et al.  Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. , 2010, Cancer cell.

[4]  A. Levine,et al.  The Control of the Metabolic Switch in Cancers by Oncogenes and Tumor Suppressor Genes , 2010, Science.

[5]  Eileen White,et al.  Autophagy and Metabolism , 2010, Science.

[6]  Elizabeth L. Johnson,et al.  Quiescent Fibroblasts Exhibit High Metabolic Activity , 2010, PLoS biology.

[7]  C. Dang,et al.  Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. , 2010, Cancer cell.

[8]  Hai Yan,et al.  Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. , 2010, Journal of the National Cancer Institute.

[9]  P. Devilee,et al.  Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree? , 2010, Current opinion in genetics & development.

[10]  J. Mackey,et al.  Metabolic Modulation of Glioblastoma with Dichloroacetate , 2010, Science Translational Medicine.

[11]  Yibin Wang,et al.  Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. , 2010, The Journal of clinical investigation.

[12]  W. Wheaton,et al.  Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity , 2010, Proceedings of the National Academy of Sciences.

[13]  K. Vousden Alternative fuel—another role for p53 in the regulation of metabolism , 2010, Proceedings of the National Academy of Sciences.

[14]  A. Levine,et al.  Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function , 2010, Proceedings of the National Academy of Sciences.

[15]  K. Vousden,et al.  The role of p53 in glucose metabolism. , 2010, Current opinion in cell biology.

[16]  E. Gottlieb,et al.  Targeting metabolic transformation for cancer therapy , 2010, Nature Reviews Cancer.

[17]  S. Sugano,et al.  Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species , 2010, Proceedings of the National Academy of Sciences.

[18]  C. Tinelli,et al.  Glutamine Synthetase Immunostaining Correlates with Pathologic Features of Hepatocellular Carcinoma and Better Survival after Radiofrequency Thermal Ablation , 2010, Clinical Cancer Research.

[19]  D. Dressman,et al.  Heteroplasmic mitochondrial DNA mutations in normal and tumor cells , 2010, Nature.

[20]  Tak W. Mak,et al.  Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations , 2010, The Journal of experimental medicine.

[21]  Chi V Dang,et al.  Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. , 2010, Cancer research.

[22]  G. Semenza HIF-1: upstream and downstream of cancer metabolism. , 2010, Current opinion in genetics & development.

[23]  Jeffrey W. Smith,et al.  Mitochondrial p32 Protein Is a Critical Regulator of Tumor Metabolism via Maintenance of Oxidative Phosphorylation , 2010, Molecular and Cellular Biology.

[24]  R. Deberardinis,et al.  Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer , 2010, Oncogene.

[25]  M. Assanah,et al.  HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer , 2010, Nature.

[26]  G. Semenza,et al.  Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression , 2010, Proceedings of the National Academy of Sciences.

[27]  W. Zong,et al.  Akt and c-Myc Differentially Activate Cellular Metabolic Programs and Prime Cells to Bioenergetic Inhibition* , 2009, The Journal of Biological Chemistry.

[28]  L. Liau,et al.  Cancer-associated IDH1 mutations produce 2-hydroxyglutarate , 2009, Nature.

[29]  James R Broach,et al.  Protein kinase A and TORC1 activate genes for ribosomal biogenesis by inactivating repressors encoded by Dot6 and its homolog Tod6 , 2009, Proceedings of the National Academy of Sciences.

[30]  Kevin M. Ryan,et al.  p53 and metabolism , 2009, Nature Reviews Cancer.

[31]  K. Kinzler,et al.  Glucose Deprivation Contributes to the Development of KRAS Pathway Mutations in Tumor Cells , 2009, Science.

[32]  Steven P. Gygi,et al.  SDH5, a Gene Required for Flavination of Succinate Dehydrogenase, Is Mutated in Paraganglioma , 2009, Science.

[33]  Hanna Y. Irie,et al.  Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment , 2009, Nature.

[34]  O. Sansom,et al.  Liver zonation occurs through a beta-catenin-dependent, c-Myc-independent mechanism. , 2009, Gastroenterology.

[35]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[36]  S. Naylor,et al.  A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. , 2009, Human molecular genetics.

[37]  Kun-Liang Guan,et al.  Glioma-Derived Mutations in IDH1 Dominantly Inhibit IDH1 Catalytic Activity and Induce HIF-1α , 2009, Science.

[38]  N. Hay,et al.  Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis. , 2009, Seminars in cancer biology.

[39]  Anthony Mancuso,et al.  Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction , 2008, Proceedings of the National Academy of Sciences.

[40]  Julien Verrax,et al.  Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. , 2008, The Journal of clinical investigation.

[41]  A. Lane,et al.  Targeting aspartate aminotransferase in breast cancer , 2008, Breast Cancer Research.

[42]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[43]  D. Sabatini,et al.  Cancer Cell Metabolism: Warburg and Beyond , 2008, Cell.

[44]  Renu M. Stephen,et al.  Regulation of the Warburg effect in early-passage breast cancer cells. , 2008, Neoplasia.

[45]  Guido Kroemer,et al.  Tumor cell metabolism: cancer's Achilles' heel. , 2008, Cancer cell.

[46]  W. Kaelin,et al.  Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. , 2008, Molecular cell.

[47]  J. Hayashi,et al.  ROS-Generating Mitochondrial DNA Mutations Can Regulate Tumor Cell Metastasis , 2008, Science.

[48]  Ru Wei,et al.  The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth , 2008, Nature.

[49]  Ralph J Deberardinis,et al.  Brick by brick: metabolism and tumor cell growth. , 2008, Current opinion in genetics & development.

[50]  G. Semenza,et al.  Hypoxia-Inducible Factor 1 and Dysregulated c-Myc Cooperatively Induce Vascular Endothelial Growth Factor and Metabolic Switches Hexokinase 2 and Pyruvate Dehydrogenase Kinase 1 , 2007, Molecular and Cellular Biology.

[51]  Nicola Zamboni,et al.  Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells , 2007, The Journal of cell biology.

[52]  A. Maitra,et al.  Frequency and phenotypic implications of mitochondrial DNA mutations in human squamous cell cancers of the head and neck , 2007, Proceedings of the National Academy of Sciences.

[53]  S. Henderson,et al.  Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production , 2007, Proceedings of the National Academy of Sciences.

[54]  P. Pedersen The cancer cell’s “power plants” as promising therapeutic targets: An overview , 2007, Journal of bioenergetics and biomembranes.

[55]  R. Braun,et al.  Modeling of oxygen transport across tumor multicellular layers. , 2007, Microvascular research.

[56]  E. Gottlieb,et al.  Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer , 2006, Oncogene.

[57]  Eyal Gottlieb,et al.  TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis , 2006, Cell.

[58]  Oksana Gavrilova,et al.  p53 Regulates Mitochondrial Respiration , 2006, Science.

[59]  C. Boschek,et al.  Pyruvate kinase type M2 and its role in tumor growth and spreading. , 2005, Seminars in cancer biology.

[60]  S. Schreiber,et al.  Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  John A. Hall,et al.  mtDNA mutations increase tumorigenicity in prostate cancer. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[62]  A. Alavi,et al.  Akt Stimulates Aerobic Glycolysis in Cancer Cells , 2004, Cancer Research.

[63]  C. Thompson,et al.  Akt and Hypoxia-Inducible Factor-1 Independently Enhance Tumor Growth and Angiogenesis , 2004, Cancer Research.

[64]  C. Thompson,et al.  Phosphatidylinositol 3-Kinase/Akt Signaling Is Neither Required for Hypoxic Stabilization of HIF-1α nor Sufficient for HIF-1-dependent Target Gene Transcription* , 2002, The Journal of Biological Chemistry.

[65]  G. Semenza,et al.  HER2 (neu) Signaling Increases the Rate of Hypoxia-Inducible Factor 1α (HIF-1α) Synthesis: Novel Mechanism for HIF-1-Mediated Vascular Endothelial Growth Factor Expression , 2001, Molecular and Cellular Biology.

[66]  P. Thibault,et al.  Transcription Factor HIF-1 Is a Necessary Mediator of the Pasteur Effect in Mammalian Cells , 2001, Molecular and Cellular Biology.

[67]  C. Dang,et al.  Deregulation of Glucose Transporter 1 and Glycolytic Gene Expression by c-Myc* , 2000, The Journal of Biological Chemistry.

[68]  A. Koong,et al.  Loss of PTEN facilitates HIF-1-mediated gene expression. , 2000, Genes & development.

[69]  K. Chien,et al.  p53 is a transcriptional activator of the muscle-specific phosphoglycerate mutase gene and contributes in vivo to the control of its cardiac expression. , 1999, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[70]  J. Nevins,et al.  Ras enhances Myc protein stability. , 1999, Molecular cell.

[71]  Chi V. Dang,et al.  c-Myc Target Genes Involved in Cell Growth, Apoptosis, and Metabolism , 1999, Molecular and Cellular Biology.

[72]  T. Fojo,et al.  p53 Inhibits Hypoxia-inducible Factor-stimulated Transcription* , 1998, The Journal of Biological Chemistry.

[73]  C. Dang,et al.  A unique glucose-dependent apoptotic pathway induced by c-Myc. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[74]  G. Semenza,et al.  V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. , 1997, Cancer research.

[75]  G. Semenza,et al.  p53 does not repress hypoxia-induced transcription of the vascular endothelial growth factor gene. , 1997, Cancer research.

[76]  D. Vertommen,et al.  Phosphorylation and Activation of Heart 6-Phosphofructo-2-kinase by Protein Kinase B and Other Protein Kinases of the Insulin Signaling Cascades* , 1997, The Journal of Biological Chemistry.

[77]  R A Jungmann,et al.  c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[78]  J. Gleadle,et al.  Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: evidence against a regulatory role for Src kinase. , 1997, Blood.

[79]  M. Guppy,et al.  Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. , 1994, The Journal of biological chemistry.

[80]  G. Semenza,et al.  Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. , 1994, The Journal of biological chemistry.

[81]  B. Ebert,et al.  Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3' enhancer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[82]  I. Goto,et al.  Glutaminase and glutamine synthetase activities in human cirrhotic liver and hepatocellular carcinoma. , 1992, Cancer research.

[83]  H. Lodish,et al.  Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. , 1987, Science.

[84]  B. Crabtree,et al.  Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. , 1985, Quarterly journal of experimental physiology.

[85]  K. Brand Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism. , 1985, The Biochemical journal.

[86]  Jonathan A. Cooper,et al.  Phosphorylation sites in enolase and lactate dehydrogenase utilized by tyrosine protein kinases in vivo and in vitro. , 1984, The Journal of biological chemistry.

[87]  A. Lehninger,et al.  The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. , 1984, The Journal of biological chemistry.

[88]  J P Freyer,et al.  In situ oxygen consumption rates of cells in V‐79 multicellular spheroids during growth , 1984, Journal of cellular physiology.

[89]  Robert A. Weinberg,et al.  Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes , 1983, Nature.

[90]  H A Krebs,et al.  Otto Heinrich Warburg, 1883-1970 , 1972, Biographical Memoirs of Fellows of the Royal Society.

[91]  H. Morris,et al.  Glutaminase activities and growth rates of rat hepatomas. , 1969, Cancer research.

[92]  Susan Goldhor,et al.  The History of Cell Respiration and Cytochrome , 1966, The Yale Journal of Biology and Medicine.

[93]  J. Turner,et al.  OXYGEN AS A FACTOR IN PHOTOSYNTHESIS , 1962, Biological reviews of the Cambridge Philosophical Society.

[94]  B. Hess,et al.  Spectroscopic Evidence of Metabolic Control , 1959, Science.

[95]  O. Warburg On respiratory impairment in cancer cells. , 1956, Science.

[96]  B. Chance,et al.  Some Patterns of the Respiratory Pigments of Ascites Tumors of Mice. , 1952, Science.

[97]  O. Warburg,et al.  THE METABOLISM OF TUMORS IN THE BODY , 1927, The Journal of general physiology.

[98]  Franz Wind,et al.  Über den Stoffwechsel von Tumoren im Körper , 1926, Klinische Wochenschrift.

[99]  C. Cori,et al.  THE CARBOHYDRATE METABOLISM OF TUMORS II. CHANGES IN THE SUGAR, LACTIC ACID, AND CO2-COMBINING POWER OF BLOOD PASSING THROUGH A TUMOR , 1925 .

[100]  C. Cori,et al.  THE CARBOHYDRATE METABOLISM OF TUMORS I. THE FREE SUGAR, LACTIC ACID, AND GLYCOGEN CONTENT OF MALIGNANT TUMORS , 1925 .

[101]  O. Warburg über den Stoffwechsel der Carcinomzelle , 1925, Klinische Wochenschrift.

[102]  O. Warburg,et al.  Versuche an Überlebendem Carcinomgewebe , 1923, Klinische Wochenschrift.

[103]  A. Einstein Emil Warburg als Forscher , 1922, Naturwissenschaften.

[104]  A Krogh,et al.  The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion , 1919, The Journal of physiology.

[105]  Tsung-Cheng Chang,et al.  c-Myc suppression of miR-23 enhances mitochondrial glutaminase and glutamine metabolism , 2009, Nature.

[106]  K. Flaherty,et al.  HIF- α effects on c-Myc distinguish two subtypes of sporadic VHL -deficient clear cell renal carcinoma , 2009 .

[107]  M. Pino,et al.  Oncogenic KRAS and BRAF Differentially Regulate Hypoxia-Inducible Factor-1 α and -2 α in Colon Cancer , 2009 .

[108]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[109]  O. Warburg Notizen zur Entwicklungsphysiologie des Seeigeleies , 2005, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[110]  H. Varmus,et al.  Oncogenes come of age. , 2005, Cold Spring Harbor symposia on quantitative biology.

[111]  O. Warburg Über den heutigen Stand des Carcinomproblems , 2005, Naturwissenschaften.

[112]  Jan Kitajewski,et al.  New targets of β-catenin signaling in the liver are involved in the glutamine metabolism , 2002, Oncogene.

[113]  S. Sri Kantha The question of nepotism in the award of Nobel prizes: a critique of the view of Hans Krebs. , 1991, Medical hypotheses.

[114]  S. Kantha The question of nepotism in the award of Nobel prizes: a critique of the view of Hans Krebs. , 1991 .

[115]  D. Nachmansohn German-Jewish pioneers in science, 1900-1933 , 1979 .

[116]  H. Krebs,et al.  Otto Warburg : Zellphysiologe, Biochemiker, Mediziner : 1883-1970 , 1979 .

[117]  E. Racker Bioenergetics and the problem of tumor growth. , 1972, American scientist.

[118]  S. Weinhouse On respiratory impairment in cancer cells. , 1956, Science.

[119]  H G Crabtree,et al.  Observations on the carbohydrate metabolism of tumours. , 1929, The Biochemical journal.

[120]  O. Warburg,et al.  Über den Stoffwechsel der Tumoren : Arbeiten aus dem Kaiser Wilhelm Institut für Biologie, Berlin- Dahlem , 1926 .