Automatic cerebellum anatomical parcellation using U-Net with locally constrained optimization

[1]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[2]  Aaron Carass,et al.  Hierarchical Parcellation of the Cerebellum , 2019, MICCAI.

[3]  Shunxing Bao,et al.  3D whole brain segmentation using spatially localized atlas network tiles , 2019, NeuroImage.

[4]  Aaron Carass,et al.  Cerebellum parcellation with convolutional neural networks , 2019, Medical Imaging: Image Processing.

[5]  J. Schmahmann The cerebellum and cognition , 2019, Neuroscience Letters.

[6]  Aaron Carass,et al.  Evaluating the Impact of Intensity Normalization on MR Image Synthesis , 2018, Image Processing.

[7]  Benjamin Thyreau,et al.  Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images , 2018, NeuroImage.

[8]  Tae Young Lee,et al.  Cerebellar Structural Abnormalities Associated With Cognitive Function in Patients With First-Episode Psychosis , 2018, Front. Psychiatry.

[9]  Daniel S. Marcus,et al.  OASIS-3: LONGITUDINAL NEUROIMAGING, CLINICAL, AND COGNITIVE DATASET FOR NORMAL AGING AND ALZHEIMER’S DISEASE , 2018, Alzheimer's & Dementia.

[10]  Daniel S. Marcus,et al.  OASIS-3: LONGITUDINAL NEUROIMAGING, CLINICAL, AND COGNITIVE DATASET FOR NORMAL AGING AND ALZHEIMER’S DISEASE , 2018, Alzheimer's & Dementia.

[11]  Ronald M. Summers,et al.  Cascaded coarse-to-fine convolutional neural networks for pericardial effusion localization and segmentation on CT scans , 2018, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).

[12]  Kaiming He,et al.  Group Normalization , 2018, ECCV.

[13]  Jeremy D. Schmahmann,et al.  Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort , 2018, NeuroImage.

[14]  Simon K. Warfield,et al.  Automatic renal segmentation in DCE-MRI using convolutional neural networks , 2017, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).

[15]  Christian Wachinger,et al.  DeepNAT: Deep convolutional neural network for segmenting neuroanatomy , 2017, NeuroImage.

[16]  Jose Dolz,et al.  3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study , 2016, NeuroImage.

[17]  Catherine J. Stoodley,et al.  Functional topography of the human cerebellum. , 2018, Handbook of clinical neurology.

[18]  Gabriel A. Devenyi,et al.  Cerebellar anatomical alterations and attention to eyes in autism , 2017, Scientific Reports.

[19]  F. Lublin,et al.  Cerebellar lobule atrophy and disability in progressive MS , 2017, Journal of Neurology, Neurosurgery, and Psychiatry.

[20]  Daniel P. Kennedy,et al.  Enhancing studies of the connectome in autism using the autism brain imaging data exchange II , 2017, Scientific Data.

[21]  Jerry L Prince,et al.  Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration , 2017, Brain : a journal of neurology.

[22]  M. Mallar Chakravarty,et al.  CERES: A new cerebellum lobule segmentation method , 2017, NeuroImage.

[23]  Patrick van der Smagt,et al.  CNN-based Segmentation of Medical Imaging Data , 2017, ArXiv.

[24]  Andrea Vedaldi,et al.  Improved Texture Networks: Maximizing Quality and Diversity in Feed-Forward Stylization and Texture Synthesis , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Konstantinos Kamnitsas,et al.  Efficient multi‐scale 3D CNN with fully connected CRF for accurate brain lesion segmentation , 2016, Medical Image Anal..

[26]  L. Jäncke,et al.  Regional cerebellar volumetric correlates of manual motor and cognitive function , 2016, Brain Structure and Function.

[27]  F. D’Agata,et al.  Consensus Paper: Cerebellum and Emotion , 2016, The Cerebellum.

[28]  Seyed-Ahmad Ahmadi,et al.  Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields , 2016, MICCAI.

[29]  Thomas Brox,et al.  3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation , 2016, MICCAI.

[30]  Terry K Koo,et al.  A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. , 2016, Journal Chiropractic Medicine.

[31]  Jian Sun,et al.  Identity Mappings in Deep Residual Networks , 2016, ECCV.

[32]  Jerry L. Prince,et al.  Improving cerebellar segmentation with statistical fusion , 2016, SPIE Medical Imaging.

[33]  Aaron Carass,et al.  Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease , 2016, NeuroImage.

[34]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Jerry L Prince,et al.  An Overview of the Multi-Object Geometric Deformable Model Approach in Biomedical Imaging , 2016 .

[36]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[37]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[38]  V. Calhoun,et al.  Regional cerebellar volume and cognitive function from adolescence to late middle age , 2015, Human brain mapping.

[39]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[40]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[41]  George Fein,et al.  Automated MRI cerebellar size measurements using active appearance modeling , 2014, NeuroImage.

[42]  Vladimir Fonov,et al.  Rapid automatic segmentation of the human cerebellum and its lobules (RASCAL)—Implementation and application of the patch‐based label‐fusion technique with a template library to segment the human cerebellum , 2014, Human brain mapping.

[43]  C. Crainiceanu,et al.  Statistical normalization techniques for magnetic resonance imaging , 2014, NeuroImage: Clinical.

[44]  Catherine J. Stoodley,et al.  Consensus Paper: Language and the Cerebellum: an Ongoing Enigma , 2013, The Cerebellum.

[45]  D. Collins,et al.  Performing label‐fusion‐based segmentation using multiple automatically generated templates , 2013, Human brain mapping.

[46]  Jerry L. Prince,et al.  Automated Segmentation of the Cerebellar Lobules Using Boundary Specific Classification and Evolution , 2013, IPMI.

[47]  Jerry L. Prince,et al.  A multiple object geometric deformable model for image segmentation , 2013, Comput. Vis. Image Underst..

[48]  Jerry L. Prince,et al.  Approaching expert results using a hierarchical cerebellum parcellation protocol for multiple inexpert human raters , 2013, NeuroImage.

[49]  M. Desmurget,et al.  Mapping motor representations in the human cerebellum. , 2013, Brain : a journal of neurology.

[50]  F. Rossi,et al.  Handbook of the Cerebellum and Cerebellar Disorders , 2013, Springer Netherlands.

[51]  Aaron Carass,et al.  Simple paradigm for extra-cerebral tissue removal: Algorithm and analysis , 2011, NeuroImage.

[52]  Paul M. Thompson,et al.  Robust Brain Extraction Across Datasets and Comparison With Publicly Available Methods , 2011, IEEE Transactions on Medical Imaging.

[53]  Min Chen,et al.  Multi-parametric neuroimaging reproducibility: A 3-T resource study , 2011, NeuroImage.

[54]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[55]  Henning Tiemeier,et al.  Cerebellum development during childhood and adolescence: A longitudinal morphometric MRI study , 2010, NeuroImage.

[56]  C. Almli,et al.  Unbiased nonlinear average age-appropriate brain templates from birth to adulthood , 2009, NeuroImage.

[57]  Stefan Klein,et al.  Cerebellum segmentation in MRI using atlas registration and local multi-scale image descriptors , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[58]  Jörn Diedrichsen,et al.  A probabilistic MR atlas of the human cerebellum , 2009, NeuroImage.

[59]  Daniel Rueckert,et al.  Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part II , 2017, Lecture Notes in Computer Science.

[60]  Stephanie Powell,et al.  Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures , 2008, NeuroImage.

[61]  Jörn Diedrichsen,et al.  A spatially unbiased atlas template of the human cerebellum , 2006, NeuroImage.

[62]  S. V. Solov'ev The weight and linear dimensions of the human cerebellum , 2006, Neuroscience and Behavioral Physiology.

[63]  Alan C. Evans,et al.  MRI Atlas of the Human Cerebellum , 2000 .

[64]  P. Strick,et al.  Basal ganglia and cerebellar loops: motor and cognitive circuits , 2000, Brain Research Reviews.

[65]  L G Nyúl,et al.  On standardizing the MR image intensity scale , 1999, Magnetic resonance in medicine.

[66]  M. Horsfield,et al.  Intra- and inter-observer agreement of brain MRI lesion volume measurements in multiple sclerosis. A comparison of techniques. , 1995, Brain : a journal of neurology.

[67]  J. Bartko The Intraclass Correlation Coefficient as a Measure of Reliability , 1966, Psychological reports.