Smooth Random Functions, Random ODEs, and Gaussian Processes

The usual way in which mathematicians work with randomness is by a rigorous formulation of the idea of Brownian motion, which is the limit of a random walk as the step length goes to zero. A Browni...

[1]  M. Longuet-Higgins The statistical analysis of a random, moving surface , 1957, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  Alex Townsend,et al.  Computing with Functions in Spherical and Polar Geometries I. The Sphere , 2015, SIAM J. Sci. Comput..

[3]  Michael V Berry,et al.  Regular and irregular semiclassical wavefunctions , 1977 .

[4]  E. Wong,et al.  On the Convergence of Ordinary Integrals to Stochastic Integrals , 1965 .

[5]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[6]  Lloyd N. Trefethen Computing Numerically with Functions Instead of Numbers , 2007 .

[7]  D. Mackay,et al.  Introduction to Gaussian processes , 1998 .

[8]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[9]  Jianhong Wu,et al.  Evolution of Biological Systems in Random Media: Limit Theorems and Stability , 2003 .

[10]  O'Connor,et al.  Properties of random superpositions of plane waves. , 1987, Physical review letters.

[11]  Lloyd N. Trefethen,et al.  Extension of Chebfun to Periodic Functions , 2015, SIAM J. Sci. Comput..

[12]  N. Wiener,et al.  Notes on random functions , 1933 .

[13]  S. Rice Mathematical analysis of random noise , 1944 .

[14]  C. Strong,et al.  Modeling the fractal geometry of Arctic melt ponds using the level sets of random surfaces , 2018, Journal of Fractal Geometry.

[15]  J. Kahane A Century of Interplay Between Taylor Series, Fourier Series and Brownian Motion , 1997 .