A generalization of Ostrowski inequality on time scales for k points

Abstract In this paper we first generalize the Ostrowski inequality on time scales for k points and then unify corresponding continuous and discrete versions. We also point out some particular Ostrowski type inequalities on time scales as special cases.

[1]  D. S. Mitrinovic,et al.  Classical and New Inequalities in Analysis , 1992 .

[2]  Martin Bohner,et al.  Ostrowski inequalities on time scales. , 2008 .

[3]  Roman Šimon Hilscher,et al.  A time scales version of a Wirtinger-type inequality and applications , 2002 .

[4]  Wenjun Liu,et al.  Further generalization of some double integral inequalities and applications. , 2008 .

[5]  WEN-JUN LIU,et al.  SEVERAL NEW PERTURBED OSTROWSKI-LIKE TYPE INEQUALITIES , 2007 .

[6]  Fengjie Geng,et al.  Multiple results of p-Laplacian dynamic equations on time scales , 2007, Appl. Math. Comput..

[7]  A Generalization of the Ostrowski Integral Inequality for Mappings Whose Derivatives Belong to Lp[a, b] and Applications in Numerical Integration☆ , 2001 .

[8]  Wenjun Liu Several error inequalities for a quadrature formula with a parameter and applications , 2008, Comput. Math. Appl..

[9]  Wenjun Liu,et al.  An Ostrowski-Grüss type inequality on time scales , 2008, Comput. Math. Appl..

[10]  V. Lakshmikantham,et al.  Dynamic systems on measure chains , 1996 .

[11]  Sever S Dragomir A Generalization of Ostrowski Integral Inequality for Mappings Whose Derivatives Belong to L_1 [a,b] and Applications in Numerical Integration , 2001 .

[12]  A. Peterson,et al.  Inequalities on Time Scales: A Survey , 2001 .

[13]  Martin Bohner,et al.  THE GR USS INEQUALITY ON TIME SCALES , 2007 .

[14]  Cheh-Chih Yeh,et al.  Anderson's inequality on time scales , 2006, Appl. Math. Lett..

[15]  Hua Su,et al.  Solutions for higher-order dynamic equations on time scales , 2008, Appl. Math. Comput..