University of Birmingham On the complexity of finding and counting solution-free sets of integers

Given a linear equation $\mathcal{L}$, a set $A$ of integers is $\mathcal{L}$-free if $A$ does not contain any `non-trivial' solutions to $\mathcal{L}$. This notion incorporates many central topics in combinatorial number theory such as sum-free and progression-free sets. In this paper we initiate the study of (parameterised) complexity questions involving $\mathcal{L}$-free sets of integers. The main questions we consider involve deciding whether a finite set of integers $A$ has an $\mathcal{L}$-free subset of a given size, and counting all such $\mathcal{L}$-free subsets. We also raise a number of open problems.

[1]  Viggo Kann,et al.  Some APX-completeness results for cubic graphs , 2000, Theor. Comput. Sci..

[2]  Maryam Sharifzadeh,et al.  Sharp bound on the number of maximal sum-free subsets of integers , 2018, Journal of the European Mathematical Society.

[3]  Alexander A. Sapozhenko The Cameron-Erdös conjecture , 2008, Discret. Math..

[4]  László Babai,et al.  Sidon Sets in Groups and Induced Subgraphs of Cayley Graphs , 1985, Eur. J. Comb..

[5]  Moni Naor,et al.  Theory and Applications of Models of Computation , 2015, Lecture Notes in Computer Science.

[6]  Imre Z. Ruzsa,et al.  Solving a linear equation in a set of integers I , 1993 .

[7]  Thomas F. Bloom,et al.  A quantitative improvement for Roth's theorem on arithmetic progressions , 2014, J. Lond. Math. Soc..

[8]  P. Erdos Extremal Problems in Number Theory , 2001 .

[9]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[10]  Terence Tao,et al.  Sumfree sets in groups: a survey , 2016, 1603.03071.

[11]  D. V. Chudnovsky,et al.  Additive number theory : festschrift in honor of the sixtieth birthday of Melvyn B. Nathanson , 2010 .

[12]  Paul Erdös,et al.  Notes on Sum-Free and Related Sets , 1999 .

[13]  Marc Thurley,et al.  Kernelizations for Parameterized Counting Problems , 2007, TAMC.

[14]  Rahul Jain,et al.  Theory and Applications of Models of Computation , 2012, Lecture Notes in Computer Science.

[15]  Vsevolod F. Lev,et al.  Progression-free sets in finite abelian groups , 2004 .

[16]  H. P. Yap,et al.  Maximal Sum-Free Sets of Elements of Finite Groups , 1969 .

[17]  W. T. Gowers,et al.  Quasirandom Groups , 2007, Combinatorics, Probability and Computing.

[18]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[19]  Mihail N. Kolountzakis Selection of a Large Sum-Free Subset in Polynomial Time , 1994, Inf. Process. Lett..

[20]  Rolf Niedermeier,et al.  Finding Points in General Position , 2015, CCCG.

[21]  D. Saxton,et al.  Hypergraph containers , 2012, 1204.6595.

[22]  Ben Green,et al.  Sets of integers with no large sum-free subset , 2013, 1301.4579.

[23]  Richard Mollin,et al.  On the Number of Sets of Integers With Various Properties , 1990 .

[24]  József Balogh,et al.  The number of maximal sum-free subsets of integers , 2014 .

[25]  A. A. Sapozhenko The Cameron-Erd˝ os conjecture , 2008 .

[26]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[27]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[28]  Tom C. Brown,et al.  A Density Version of a Geometric Ramsey Theorem , 1982, J. Comb. Theory, Ser. A.

[29]  N. Alon,et al.  A Tribute to Paul Erdős: Sum-free subsets , 1990 .

[30]  Ben Green The Cameron–Erdős Conjecture , 2003 .

[31]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[32]  Alexandr V. Kostochka,et al.  On independent sets in hypergraphs , 2011, Random Struct. Algorithms.

[33]  Vojtech Rödl,et al.  On subsets of abelian groups with no 3-term arithmetic progression , 1987, J. Comb. Theory, Ser. A.

[34]  Rolf Niedermeier,et al.  An efficient fixed-parameter algorithm for 3-Hitting Set , 2003, J. Discrete Algorithms.

[35]  Jörg Flum,et al.  The Parameterized Complexity of Counting Problems , 2004, SIAM J. Comput..

[36]  Maryam Sharifzadeh,et al.  The number of subsets of integers with no $k$-term arithmetic progression , 2016, 1605.03172.

[37]  T. Sanders On Roth's theorem on progressions , 2010, 1011.0104.

[38]  Michael R. Fellows,et al.  On the parameterized complexity of multiple-interval graph problems , 2009, Theor. Comput. Sci..

[39]  Kitty Meeks,et al.  The challenges of unbounded treewidth in parameterised subgraph counting problems , 2014, Discret. Appl. Math..

[40]  Catherine S. Greenhill The complexity of counting colourings and independent sets in sparse graphs and hypergraphs , 2000, computational complexity.

[41]  Manindra Agrawal,et al.  PRIMES is in P , 2004 .

[42]  Julia Wolf,et al.  A Note on Elkin’s Improvement of Behrend’s Construction , 2010 .

[43]  J. Bourgain Estimates related to sumfree subsets of sets of integers , 1997 .

[44]  Andrew Treglown,et al.  On solution-free sets of integers II , 2017 .

[45]  K. F. Roth On Certain Sets of Integers , 1953 .

[46]  Michael Elkin An improved construction of progression-free sets , 2010, SODA '10.

[47]  Ben Green,et al.  Sum-free sets in abelian groups , 2003 .