A new two-stage mesh surface segmentation method

Partitioning a mesh surface into several semantic components is a fundamental task in geometry processing. This paper presents a new stable and effective segmentation method, which contains two stages. The first stage is a spectral clustering procedure, while the second stage is a variational refining procedure. For spectral clustering, we construct a new Laplacian matrix which reflects more semantic information than classical Laplacian matrices. By this new Laplacian, we introduce a simple and fast spectral clustering method, which gives quite satisfying segmentation results for most surfaces and provides a good initialization for the second stage. In the second stage, we propose a variational refining procedure by a new discretization of the classical non-convex Mumford–Shah model. The variational problem is solved by efficient iterative algorithms based on alternating minimization and alternating direction method of multipliers (ADMM). The first stage provides a good initialization for the second stage, while the second stage refines the result of the first stage well. Experiments demonstrated that our method is very stable and effective compared to existing approaches. It outperforms competitive segmentation methods when evaluated on the Princeton Segmentation Benchmark.

[1]  Jing Yuan,et al.  Convex Multi-class Image Labeling by Simplex-Constrained Total Variation , 2009, SSVM.

[2]  TalAyellet,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003 .

[3]  Thomas A. Funkhouser,et al.  Randomized cuts for 3D mesh analysis , 2008, SIGGRAPH Asia '08.

[4]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[5]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[6]  Ariel Shamir,et al.  A survey on Mesh Segmentation Techniques , 2008, Comput. Graph. Forum.

[7]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[8]  Ross T. Whitaker,et al.  Partitioning 3D Surface Meshes Using Watershed Segmentation , 1999, IEEE Trans. Vis. Comput. Graph..

[9]  Jianfei Cai,et al.  Interactive Mesh Cutting Using Constrained Random Walks , 2011, IEEE Transactions on Visualization and Computer Graphics.

[10]  Marco Attene,et al.  Hierarchical mesh segmentation based on fitting primitives , 2006, The Visual Computer.

[11]  Aaron Hertzmann,et al.  Learning 3D mesh segmentation and labeling , 2010, SIGGRAPH 2010.

[12]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[13]  Junfeng Yang,et al.  A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction From Partial Fourier Data , 2010, IEEE Journal of Selected Topics in Signal Processing.

[14]  Baining Guo,et al.  Rolling guidance normal filter for geometric processing , 2015, ACM Trans. Graph..

[15]  Guillaume Lavoué,et al.  A comparative study of existing metrics for 3D-mesh segmentation evaluation , 2010, The Visual Computer.

[16]  Steve Marschner,et al.  Matching Real Fabrics with Micro-Appearance Models , 2015, ACM Trans. Graph..

[17]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[18]  Thomas A. Funkhouser,et al.  A benchmark for 3D mesh segmentation , 2009, ACM Trans. Graph..

[19]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method for Total Variation Based Image Restoration and Segmentation Over Triangulated Surfaces , 2012, J. Sci. Comput..

[20]  Xue-Cheng Tai,et al.  A binary level set model and some applications to Mumford-Shah image segmentation , 2006, IEEE Transactions on Image Processing.

[21]  Xiaowu Chen,et al.  3D Mesh Labeling via Deep Convolutional Neural Networks , 2015, ACM Trans. Graph..

[22]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[23]  Antonin Chambolle,et al.  Image Segmentation by Variational Methods: Mumford and Shah Functional and the Discrete Approximations , 1995, SIAM J. Appl. Math..

[24]  Leif Kobbelt,et al.  Structure Recovery via Hybrid Variational Surface Approximation , 2005, Comput. Graph. Forum.

[25]  Pengfei Xu,et al.  Mesh Segmentation with Concavity-Aware Fields , 2012, IEEE Transactions on Visualization and Computer Graphics.

[26]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[27]  Mathieu Desbrun,et al.  Variational shape approximation , 2004, SIGGRAPH 2004.

[28]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[29]  Ioannis Pratikakis,et al.  3D Mesh Segmentation Methodologies for CAD applications , 2007 .

[30]  Daniel Cohen-Or,et al.  Consistent mesh partitioning and skeletonisation using the shape diameter function , 2008, The Visual Computer.

[31]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[32]  W. Ziemer Weakly differentiable functions , 1989 .

[33]  Atilla Baskurt,et al.  A new CAD mesh segmentation method, based on curvature tensor analysis , 2005, Comput. Aided Des..

[34]  Leonidas J. Guibas,et al.  Shape segmentation using local slippage analysis , 2004, SGP '04.

[35]  Hao Zhang,et al.  Segmentation of 3D meshes through spectral clustering , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[36]  Youyi Zheng,et al.  Dot Scissor: A Single-Click Interface for Mesh Segmentation , 2012, IEEE Transactions on Visualization and Computer Graphics.

[37]  Daniel Cohen-Or,et al.  Shape Segmentation by Approximate Convexity Analysis , 2014, ACM Trans. Graph..

[38]  Chi-Wing Fu,et al.  Efficiently Computing Exact Geodesic Loops within Finite Steps , 2012, IEEE Transactions on Visualization and Computer Graphics.

[39]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[40]  Anders Heyden,et al.  Convex multi-region segmentation on manifolds , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[41]  Tony F. Chan,et al.  A framework for intrinsic image processing on surfaces , 2011, Comput. Vis. Image Underst..

[42]  Michael K. Ng,et al.  Solving Constrained Total-variation Image Restoration and Reconstruction Problems via Alternating Direction Methods , 2010, SIAM J. Sci. Comput..

[43]  Michael Garland,et al.  Hierarchical face clustering on polygonal surfaces , 2001, I3D '01.

[44]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method, Dual Methods, and Split Bregman Iteration for ROF, Vectorial TV, and High Order Models , 2010, SIAM J. Imaging Sci..

[45]  Sehoon Ha,et al.  Iterative Training of Dynamic Skills Inspired by Human Coaching Techniques , 2014, ACM Trans. Graph..

[46]  Christoph Schnörr,et al.  Continuous Multiclass Labeling Approaches and Algorithms , 2011, SIAM J. Imaging Sci..

[47]  Jianfei Cai,et al.  Variational mesh decomposition , 2012, TOGS.

[48]  Dong-Ming Yan,et al.  Variational mesh segmentation via quadric surface fitting , 2012, Comput. Aided Des..

[49]  Hao Zhang,et al.  New evaluation metrics for mesh segmentation , 2013, Comput. Graph..

[50]  Bailin Deng,et al.  Guided Mesh Normal Filtering , 2015, Comput. Graph. Forum.

[51]  Subhransu Maji,et al.  3D Shape Segmentation with Projective Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Ayellet Tal,et al.  Mesh segmentation using feature point and core extraction , 2005, The Visual Computer.

[53]  Ralph R. Martin,et al.  Fast mesh segmentation using random walks , 2008, SPM '08.

[54]  A. Fiacco A Finite Algorithm for Finding the Projection of a Point onto the Canonical Simplex of R " , 2009 .

[55]  Ramsay Dyer,et al.  Spectral Mesh Processing , 2010, Comput. Graph. Forum.

[56]  Huayan Zhang,et al.  Variational Mesh Denoising Using Total Variation and Piecewise Constant Function Space. , 2015, IEEE transactions on visualization and computer graphics.

[57]  Xue-Cheng Tai,et al.  A Level Set Formulation of Geodesic Curvature Flow on Simplicial Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.