Constraints for precise and accurate fluid inclusion stable isotope analysis using water-vapour saturated CRDS techniques

[1]  M. Bar-Matthews,et al.  Eastern Mediterranean climate change deduced from the Soreq Cave fluid inclusion stable isotopes and carbonate clumped isotopes record of the last 160 ka , 2021, Quaternary Science Reviews.

[2]  A. Winter,et al.  Supplementary material to "Last glacial millennial-scale hydro-climate and temperature changes in Puerto Rico constrained by speleothem fluid inclusion δ18O and δ2H values" , 2021, Climate of the Past.

[3]  J. Fohlmeister,et al.  Are oxygen isotope fractionation factors between calcite and water derived from speleothems systematically biased due to prior calcite precipitation (PCP)? , 2021, Geochimica et Cosmochimica Acta.

[4]  I. Hatvani,et al.  Paleotemperature reconstructions using speleothem fluid inclusion analyses from Hungary , 2021, Chemical Geology.

[5]  R. Edwards,et al.  Exceptional warmth and climate instability occurred in the European Alps during the Last Interglacial period , 2020, Communications Earth & Environment.

[6]  G. Haug,et al.  Isotope ratio infrared spectroscopy (IRIS) analysis of water samples without memory effects. , 2020, Rapid communications in mass spectrometry : RCM.

[7]  G. Haug,et al.  A comparison of IRMS and CRDS techniques for isotope analysis of fluid inclusion water. , 2020, Rapid communications in mass spectrometry : RCM.

[8]  M. Molnár,et al.  Paleotemperature reconstruction using environmental isotopes and noble gases in groundwater in Morocco , 2020, Hydrogeology Journal.

[9]  R. Uemura,et al.  Experimental evaluation of oxygen isotopic exchange between inclusion water and host calcite in speleothems , 2019, Climate of the Past.

[10]  D. Fleitmann,et al.  Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years , 2019, Science Advances.

[11]  J. Esper,et al.  Reconstruction of late Holocene autumn/winter precipitation variability in SW Romania from a high-resolution speleothem trace element record , 2018, Earth and Planetary Science Letters.

[12]  V. Brovkin,et al.  Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond , 2018, Nature Geoscience.

[13]  D. Genty,et al.  A Newly Designed Analytical Line to Examine Fluid Inclusion Isotopic Compositions in a Variety of Carbonate Samples , 2018 .

[14]  R. Edwards,et al.  Last glacial and Holocene stable isotope record of fossil dripwater from subtropical Brazil based on analysis of fluid inclusions in stalagmites , 2017 .

[15]  L. Haszpra,et al.  Stable isotope compositions of speleothems from the last interglacial – Spatial patterns of climate fluctuations in Europe , 2017 .

[16]  C. Spötl,et al.  Sensitivity of Bunker Cave to climatic forcings highlighted through multi-annual monitoring of rain-, soil-, and dripwaters , 2017 .

[17]  A. Clement,et al.  Bahamian speleothem reveals temperature decrease associated with Heinrich stadials , 2015 .

[18]  D. Fleitmann,et al.  Glacial–interglacial temperature change in the tropical West Pacific: A comparison of stalagmite-based paleo-thermometers , 2015 .

[19]  R. Edwards,et al.  A high-resolution fluid inclusion δ18O record from a stalagmite in SW France: Modern calibration and comparison with multiple proxies , 2015 .

[20]  D. Fleitmann,et al.  New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS) , 2014 .

[21]  L. Papp,et al.  Stable (H, O, C) and noble-gas (He and Ar) isotopic compositions from calcite and fluorite in the Speewah Dome, Kimberley Region, Western Australia: implications for the conditions of crystallization and evidence for the influence of crustal-mantle fluid mixing , 2014, Mineralogy and Petrology.

[22]  H. Vonhof,et al.  Measurement of δ18O and δ2H values of fluid inclusion water in speleothems using cavity ring-down spectroscopy compared with isotope ratio mass spectrometry. , 2013, Rapid communications in mass spectrometry : RCM.

[23]  Chuan‐Chou Shen,et al.  Mid-Holocene climate conditions and moisture source variations based on stable H, C and O isotope compositions of speleothems in Hungary , 2013 .

[24]  J. Fohlmeister,et al.  Reconstruction of drip-water δ 18 O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany) , 2013 .

[25]  J. Barth,et al.  Optimization of instrument setup and post‐run corrections for oxygen and hydrogen stable isotope measurements of water by isotope ratio infrared spectroscopy (IRIS) , 2012 .

[26]  M. Mudelsee,et al.  Bunker Cave stalagmites: an archive for central European Holocene climate variability , 2012 .

[27]  R. Fort,et al.  Porosity and hydric behavior of typical calcite microfabrics in stalagmites , 2012 .

[28]  H. Wernli,et al.  Measuring variations of δ 18 O and δ 2 H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study , 2012 .

[29]  J. Fohlmeister,et al.  Monitoring Bunker Cave (NW Germany): A prerequisite to interpret geochemical proxy data of speleothems from this site , 2011 .

[30]  Yang Wang,et al.  Speleothem calcite farmed in situ: Modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system , 2011 .

[31]  M. Wieser,et al.  Dating cave drip water by tritium , 2010 .

[32]  M. Griffiths,et al.  Younger Dryas-Holocene temperature and rainfall history of southern Indonesia from delta O-18 in spe , 2010 .

[33]  B. Kromer,et al.  The Influence of Soil Organic Matter Age Spectrum on the Reconstruction of Atmospheric 14C Levels Via Stalagmites , 2010, Radiocarbon.

[34]  C. Spötl,et al.  Hydrogen and oxygen isotopes of water from inclusions in minerals: design of a new crushing system and on-line continuous-flow isotope ratio mass spectrometric analysis. , 2009, Rapid communications in mass spectrometry : RCM.

[35]  Colm Sweeney,et al.  Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology. , 2009, Rapid communications in mass spectrometry : RCM.

[36]  Eric R. Crosson,et al.  Cavity ring-down spectroscopy versus high-temperature conversion isotope ratio mass spectrometry; a case study on delta(2)H and delta(18)O of pure water samples and alcohol/water mixtures. , 2009, Rapid communications in mass spectrometry : RCM.

[37]  T. Atkinson,et al.  Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem from St Michaels Cave, Gibraltar , 2009 .

[38]  I. Hajdas,et al.  A record of temperature and monsoon intensity over the past 40 kyr from groundwater in the North China Plain , 2009 .

[39]  J. Hellstrom,et al.  Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia , 2008 .

[40]  W. Aeschbach–Hertig,et al.  A new tool for palaeoclimate reconstruction: Noble gas temperatures from fluid inclusions in speleothems , 2008 .

[41]  H. Schwarcz,et al.  An absolute paleotemperature record from 10 to 6 Ka inferred from fluid inclusion D/H ratios of a stalagmite from Vancouver Island, British Columbia, Canada , 2008 .

[42]  D. Genty,et al.  Water release patterns of heated speleothem calcite and hydrogen isotope composition of fluid inclusions , 2008 .

[43]  M. Suter,et al.  MICADAS: A new compact radiocarbon AMS system , 2007 .

[44]  H. Vonhof,et al.  A continuous-flow crushing device for on-line delta2H analysis of fluid inclusion water in speleothems. , 2006, Rapid communications in mass spectrometry : RCM.

[45]  W. Darling Hydrological factors in the interpretation of stable isotopic proxy data present and past: a European perspective , 2004 .

[46]  M. Bar-Matthews,et al.  Constraints on hydrological and paleotemperature variations in the Eastern Mediterranean region in the last 140 ka given by the δD values of speleothem fluid inclusions , 2004 .

[47]  J. Chappell,et al.  Comparison of high resolution sub-annual records of trace elements in a modern (1911–1992) speleothem with instrumental climate data from southwest Australia , 2003 .

[48]  Anders Moberg,et al.  Daily dataset of 20th‐century surface air temperature and precipitation series for the European Climate Assessment , 2002 .

[49]  T. Atkinson,et al.  The recovery and isotopic measurement of water from fluid inclusions in speleothems , 2001 .

[50]  M. Bar-Matthews,et al.  D/H ratios of fluid inclusions of Soreq cave (Israel) speleothems as a guide to the Eastern Mediterranean Meteoric Line relationships in the last 120 ky , 2000 .

[51]  Sang-Tae Kim,et al.  Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates , 1997 .

[52]  K. Różański,et al.  Relation Between Long-Term Trends of Oxygen-18 Isotope Composition of Precipitation and Climate , 1992, Science.

[53]  C. Yonge Stable Isotope Studies of Water Extracted from Speleothems , 1982 .

[54]  H. Schwarcz,et al.  D/H ratios in speleothem fluid inclusions: A guide to variations in the isotopic composition of meteoric precipitation? , 1979 .

[55]  P. J. Thompson,et al.  Stable isotope studies of fluid inclusions in speleothems and their paleoclimatic significance , 1976 .

[56]  H. Craig Isotopic Variations in Meteoric Waters , 1961, Science.

[57]  Yu-Wei Chang,et al.  Precise oxygen and hydrogen isotope determination in nanoliter quantities of speleothem inclusion water by cavity ring-down spectroscopic techniques , 2016 .

[58]  L. Palcsu,et al.  Groundwater flow system as an archive of palaeotemperature: Noble gas, radiocarbon, stable isotope and geochemical study in the Pannonian Basin, Hungary , 2011 .

[59]  H. Schwarcz,et al.  ISOTOPES IN SPELEOTHEMS , 2006 .