Probing membrane order and topography in supported lipid bilayers by combined polarized total internal reflection fluorescence-atomic force microscopy.

Determining the local structure, dynamics, and conformational requirements for protein-protein and protein-lipid interactions in membranes is critical to understanding biological processes ranging from signaling to the translocating and membranolytic action of antimicrobial peptides. We report here the application of a combined polarized total internal reflection fluorescence microscopy-in situ atomic force microscopy platform. This platform's ability to image membrane orientational order was demonstrated on DOPC/DSPC/cholesterol model membranes containing the fluorescent membrane probe, DiI-C(20) or BODIPY-PC. Spatially resolved order parameters and fluorophore tilt angles extracted from the polarized total internal reflection fluorescence microscopy images were in good agreement with the topographical details resolved by in situ atomic force microscopy, portending use of this technique for high-resolution characterization of membrane domain structures and peptide-membrane interactions.

[1]  P. Axelsen,et al.  Orientational order determination by internal reflection infrared spectroscopy. , 1996, Progress in biophysics and molecular biology.

[2]  William L. Barnes,et al.  Shedding light on life , 2008 .

[3]  S. Veatch From small fluctuations to large-scale phase separation: lateral organization in model membranes containing cholesterol. , 2007, Seminars in cell & developmental biology.

[4]  J. Korlach,et al.  Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Li Li,et al.  Coexisting stripe- and patch-shaped domains in giant unilamellar vesicles. , 2006, Biochemistry.

[6]  Wan-Chen Lin,et al.  Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study. , 2006, Biophysical journal.

[7]  D. Axelrod Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. , 1979, Biophysical journal.

[8]  A. Rodger,et al.  Linear dichroism of biomolecules: which way is up? , 2004, Current opinion in structural biology.

[9]  L. Tamm,et al.  Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study. , 1991, Biophysical journal.

[10]  S. Tatulian,et al.  Infrared spectroscopy of proteins and peptides in lipid bilayers , 1997, Quarterly Reviews of Biophysics.

[11]  D. Sasaki,et al.  In situ scanning probe microscopy studies of tetanus toxin-membrane interactions. , 2006, Biophysical journal.

[12]  P. Verkade,et al.  Phase coexistence and connectivity in the apical membrane of polarized epithelial cells. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[13]  C. Lafrance,et al.  On the relationship between the order parameter and the shape of orientation distributions , 1995 .

[14]  I. Vattulainen,et al.  Influence of DPH on the structure and dynamics of a DPPC bilayer. , 2005, Biophysical journal.

[15]  L. Tamm,et al.  Measuring lipid asymmetry in planar supported bilayers by fluorescence interference contrast microscopy. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[16]  G. Feigenson Phase boundaries and biological membranes. , 2007, Annual review of biophysics and biomolecular structure.

[17]  N. Thompson,et al.  Slow rotational mobilities of antibodies and lipids associated with substrate-supported phospholipid monolayers as measured by polarized fluorescence photobleaching recovery. , 1990, Biophysical journal.

[18]  H. Heller,et al.  Calculation of IR dichroic values and order parameters from molecular dynamics simulations and their application to structure determination of lipid bilayers , 1996, European Biophysics Journal.

[19]  E. Sackmann,et al.  Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. , 1991, Biophysical journal.

[20]  G. Lindblom,et al.  NMR on lipid membranes and their proteins , 2006 .

[21]  R. Weis,et al.  Periodic structures in lipid monolayer phase transitions. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[22]  T. Mitchison,et al.  Structural insights into yeast septin organization from polarized fluorescence microscopy , 2006, Nature.

[23]  A. Heikal,et al.  Dynamics imaging of lipid phases and lipid-marker interactions in model biomembranes. , 2006, Physical chemistry chemical physics : PCCP.

[24]  G. Meer New EMBO Member's Review Cellular lipidomics , 2005 .

[25]  Frederick A. Heberle,et al.  Phase studies of model biomembranes: complex behavior of DSPC/DOPC/cholesterol. , 2007, Biochimica et biophysica acta.

[26]  S. Boxer,et al.  Phase Separation of Lipid Membranes Analyzed with High-Resolution Secondary Ion Mass Spectrometry , 2006, Science.

[27]  S. Krueger,et al.  Neutron Reflectivity and Atomic Force Microscopy Studies of a Lipid Bilayer in Water Adsorbed to the Surface of a Silicon Single Crystal , 1996 .

[28]  P. Schwille,et al.  Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. , 2006, Biophysical journal.

[29]  M. Osborne Real-time dipole orientational imaging as a probe of ligand-protein interactions. , 2005, The journal of physical chemistry. B.

[30]  N. Thompson,et al.  Effect of planar dielectric interfaces on fluorescence emission and detection. Evanescent excitation with high-aperture collection. , 1984, Biophysical journal.

[31]  M. Edidin The state of lipid rafts: from model membranes to cells. , 2003, Annual review of biophysics and biomolecular structure.

[32]  J. Lakowicz Topics in fluorescence spectroscopy , 2002 .

[33]  N. Thompson,et al.  Total internal reflection fluorescence. , 1984, Annual review of biophysics and bioengineering.

[34]  J. Swanson,et al.  Cell membrane orientation visualized by polarized total internal reflection fluorescence. , 1999, Biophysical journal.

[35]  D. Piston,et al.  The orientation of eosin-5-maleimide on human erythrocyte band 3 measured by fluorescence polarization microscopy. , 1996, Biophysical journal.

[36]  D. Piston,et al.  FRET by fluorescence polarization microscopy. , 2008, Methods in cell biology.

[38]  Sarah L Veatch,et al.  Seeing spots: complex phase behavior in simple membranes. , 2005, Biochimica et biophysica acta.

[39]  D. Axelrod Fluorescence polarization microscopy. , 1989, Methods in cell biology.

[40]  W. Hubbell,et al.  Molecular motion in spin-labeled phospholipids and membranes. , 1971, Journal of the American Chemical Society.

[41]  P. Schwille,et al.  Lipid domain formation and dynamics in giant unilamellar vesicles explored by fluorescence correlation spectroscopy. , 2004, Journal of structural biology.

[42]  F. Goñi,et al.  Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers. , 2006, Biophysical journal.

[43]  I. Vattulainen,et al.  Free pyrene probes in gel and fluid membranes: perspective through atomistic simulations. , 2007, The journal of physical chemistry. B.

[44]  T. Burghardt Model‐Independent fluorescence polarization for measuring order in a biological assembly , 1984, Biopolymers.

[45]  C. Yip,et al.  Coupling evanescent‐wave fluorescence imaging and spectroscopy with scanning probe microscopy: challenges and insights from TIRF–AFM , 2006 .

[46]  A. Verkman,et al.  Mapping of fluorescence anisotropy in living cells by ratio imaging. Application to cytoplasmic viscosity. , 1990, Biophysical journal.

[47]  J. Seelig,et al.  Deuterium-labeled lipids as structural probes in liquid crystalline bilayers. Deuterium magnetic resonance study , 1974 .

[48]  D. Brown,et al.  Functions of lipid rafts in biological membranes. , 1998, Annual review of cell and developmental biology.

[49]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[50]  R. Epand,et al.  Tracking peptide-membrane interactions: insights from in situ coupled confocal-atomic force microscopy imaging of NAP-22 peptide insertion and assembly. , 2006, Journal of structural biology.

[51]  D. Axelrod Total Internal Reflection Fluorescence Microscopy in Cell Biology , 2001, Traffic.

[52]  K. Gawrisch,et al.  Critical fluctuations in domain-forming lipid mixtures , 2007, Proceedings of the National Academy of Sciences.

[53]  P. Flournoy,et al.  Attenuated total reflection spectra from surfaces of anisotropic, absorbing films , 1966 .

[54]  Daniel Axelrod,et al.  Visualization of regulated exocytosis with a granule-membrane probe using total internal reflection microscopy. , 2004, Molecular biology of the cell.

[55]  A. Tian,et al.  Flicker spectroscopy of thermal lipid bilayer domain boundary fluctuations. , 2007, Biophysical journal.

[56]  H. Grubmüller,et al.  Simulation of fluorescence anisotropy experiments: probing protein dynamics. , 2005, Biophysical journal.

[57]  Watt W. Webb,et al.  Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles , 2007, Proceedings of the National Academy of Sciences.

[58]  J. Seelig,et al.  The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. , 1974, Biochemistry.

[59]  D. Axelrod,et al.  Secretory granule behaviour adjacent to the plasma membrane before and during exocytosis: total internal reflection fluorescence microscopy studies , 2007, Acta physiologica.

[60]  J. Silvius Lipid microdomains in model and biological membranes: how strong are the connections? , 2005, Quarterly Reviews of Biophysics.

[61]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[62]  Luís M. S. Loura,et al.  Location and dynamics of acyl chain NBD-labeled phosphatidylcholine (NBD-PC) in DPPC bilayers. A molecular dynamics and time-resolved fluorescence anisotropy study. , 2007, Biochimica et biophysica acta.

[63]  Thorsten Wohland,et al.  Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy. , 2006, Analytical chemistry.

[64]  R. Epand,et al.  Correlated fluorescence-atomic force microscopy of membrane domains: structure of fluorescence probes determines lipid localization. , 2006, Biophysical journal.

[65]  Richard G. W. Anderson,et al.  Lipid rafts: at a crossroad between cell biology and physics , 2007, Nature Cell Biology.

[66]  R. Azzam,et al.  Polarized light in optics and spectroscopy , 1990 .

[67]  A. Fedorov,et al.  Complexity of lipid domains and rafts in giant unilamellar vesicles revealed by combining imaging and microscopic and macroscopic time-resolved fluorescence. , 2007, Biophysical journal.

[68]  James H. Davis,et al.  Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. , 1990, Biochemistry.

[69]  S. Simon,et al.  Imaging Constitutive Exocytosis with Total Internal Reflection Fluorescence Microscopy , 2000, The Journal of cell biology.

[70]  M. Neil,et al.  Fluorescence imaging of two-photon linear dichroism: cholesterol depletion disrupts molecular orientation in cell membranes. , 2005, Biophysical journal.

[71]  D. Toptygin,et al.  Determination of DPH order parameters in unoriented vesicles , 1995, Journal of Fluorescence.

[72]  H. Mcconnell,et al.  Lateral phase separation in phospholipid membranes. , 1973, Biochemistry.

[73]  L. Bagatolli,et al.  Cholesterol Rules , 2004, Journal of Biological Chemistry.

[74]  K. Kinosita,et al.  Dynamic structure of biological and model membranes: analysis by optical anisotropy decay measurement. , 1984, Advances in biophysics.

[75]  Y. Goldman,et al.  Protein structural dynamics by single-molecule fluorescence polarization. , 2000, Progress in biophysics and molecular biology.

[76]  K. Florine‐Casteel Phospholipid order in gel- and fluid-phase cell-size liposomes measured by digitized video fluorescence polarization microscopy. , 1990, Biophysical journal.

[77]  K. Jacobson,et al.  Binding of NAP-22, a calmodulin-binding neuronal protein, to raft-like domains in model membranes. , 2003, Biochemistry.

[78]  Hai-Tao He,et al.  Dynamics in the plasma membrane: how to combine fluidity and order , 2006, The EMBO journal.

[79]  Jennifer N. Greeson,et al.  Application of fluorescence polarization microscopy to measure fluorophore orientation in the outer hair cell plasma membrane. , 2007, Journal of biomedical optics.

[80]  F. S. Cohen,et al.  Lipid peroxides promote large rafts: effects of excitation of probes in fluorescence microscopy and electrochemical reactions during vesicle formation. , 2006, Biophysical journal.

[81]  T. Burghardt,et al.  GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber. , 2007, Biophysical journal.

[82]  W. Webb,et al.  Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. , 2007, Biochimica et biophysica acta.

[83]  F. Maxfield,et al.  Cholesterol depletion induces large scale domain segregation in living cell membranes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[84]  I. Vattulainen,et al.  Influence of pyrene-labeling on fluid lipid membranes. , 2006, Journal of Physical Chemistry B.

[85]  M. P. Heyn Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments , 1979, FEBS letters.

[86]  P. Axelsen,et al.  Determination of molecular order in supported lipid membranes by internal reflection Fourier transform infrared spectroscopy. , 1996, Biophysical journal.

[87]  J. Rice,et al.  Beyond the diffraction limit: far-field fluorescence imaging with ultrahigh resolution. , 2007, Molecular bioSystems.

[88]  Yuexin Liu,et al.  Membrane order and molecular dynamics associated with IgE receptor cross-linking in mast cells. , 2007, Biophysical journal.

[89]  B. Baird,et al.  Fluorescence anisotropy measurements of lipid order in plasma membranes and lipid rafts from RBL-2H3 mast cells. , 2001, Biochemistry.

[90]  M. Bloom,et al.  Models of lipid-protein interactions in membranes. , 1993, Annual review of biophysics and biomolecular structure.

[91]  A. Shaw Lipid rafts: now you see them, now you don't , 2006, Nature Immunology.

[92]  Z. Surviladze,et al.  Revealing the topography of cellular membrane domains by combined atomic force microscopy/fluorescence imaging. , 2006, Biophysical journal.

[93]  C. Yip,et al.  Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. , 2006, Journal of structural biology.

[94]  H. Mcconnell,et al.  Allogeneic stimulation of cytotoxic T cells by supported planar membranes. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[95]  D. Axelrod Cell-substrate contacts illuminated by total internal reflection fluorescence , 1981, The Journal of cell biology.

[96]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[97]  Tony J Collins,et al.  ImageJ for microscopy. , 2007, BioTechniques.

[98]  Andreea Trache,et al.  Atomic force-multi-optical imaging integrated microscope for monitoring molecular dynamics in live cells. , 2005, Journal of biomedical optics.

[99]  L. Pike Rafts defined: a report on the Keystone symposium on lipid rafts and cell function Published, JLR Papers in Press, April 27, 2006. , 2006, Journal of Lipid Research.

[100]  G. Feigenson Phase behavior of lipid mixtures , 2006, Nature chemical biology.

[101]  L. Bagatolli,et al.  To see or not to see: lateral organization of biological membranes and fluorescence microscopy. , 2006, Biochimica et biophysica acta.

[102]  E Gratton,et al.  Lipid rafts reconstituted in model membranes. , 2001, Biophysical journal.

[103]  F. Goñi,et al.  Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. , 2007, Biophysical journal.

[104]  Rama R. Gullapalli,et al.  Molecular dynamics simulations of DiI-C18(3) in a DPPC lipid bilayer. , 2008, Physical chemistry chemical physics : PCCP.

[105]  M. X. Fernandes,et al.  Using UV-Vis. linear dichroism to study the orientation of molecular probes and biomolecules in lipidic membranes , 2003 .

[106]  M. Bloom,et al.  Relationships between lipid membrane area, hydrophobic thickness, and acyl-chain orientational order. The effects of cholesterol. , 1990, Biophysical journal.

[107]  K. Jacobson,et al.  Detecting microdomains in intact cell membranes. , 2005, Annual review of physical chemistry.

[108]  C. Yip,et al.  Molecular imaging of membrane interfaces reveals mode of β-glucosidase activation by saposin C , 2007, Proceedings of the National Academy of Sciences.

[109]  N. Thompson,et al.  Order in supported phospholipid monolayers detected by the dichroism of fluorescence excited with polarized evanescent illumination. , 1984, Biophysical journal.

[110]  L. Johnston,et al.  Nanoscale imaging of domains in supported lipid membranes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[111]  Pietro Cicuta,et al.  Diffusion of liquid domains in lipid bilayer membranes. , 2007, The journal of physical chemistry. B.

[112]  A. Heikal,et al.  Molecular Perspective of Antigen-mediated Mast Cell Signaling* , 2008, Journal of Biological Chemistry.

[113]  Label-free coherent anti-stokes Raman scattering imaging of coexisting lipid domains in single bilayers. , 2008, The journal of physical chemistry. B.

[114]  R. Epand,et al.  Cationic peptide-induced remodelling of model membranes: direct visualization by in situ atomic force microscopy. , 2008, Journal of structural biology.

[115]  G. Meer,et al.  Membrane lipids: where they are and how they behave , 2008, Nature Reviews Molecular Cell Biology.

[116]  S. Mayor,et al.  GPI-anchored proteins are organized in submicron domains at the cell surface , 1998, Nature.

[117]  J. Hancock,et al.  Lipid rafts: contentious only from simplistic standpoints , 2006, Nature Reviews Molecular Cell Biology.