On lower semicontinuity of the entropic disturbance and its applications in quantum information theory
暂无分享,去创建一个
[1] M. E. Shirokov,et al. Properties of probability measures on the set of quantum states and their applications , 2006 .
[2] Maksim E. Shirokov. Conditions for coincidence of the classical capacity and entanglement-assisted capacity of a quantum channel , 2012, Probl. Inf. Transm..
[3] Mark M. Wilde,et al. From Classical to Quantum Shannon Theory , 2011, ArXiv.
[4] Александр Семенович Холево,et al. Непрерывные ансамбли и пропускная способность квантовых каналов бесконечной размерности@@@Continuous ensembles and the capacity of infinite-dimensional quantum channels , 2005 .
[5] M. Shirokov. Measures of correlations in infinite-dimensional quantum systems , 2015, 1506.06377.
[6] Alexander S. Holevo,et al. On approximation of infinite-dimensional quantum channels , 2008, Probl. Inf. Transm..
[7] M. Shirokov. Conditions for equality between entanglement-assisted and unassisted classical capacities of a quantum channel , 2011, 1105.1040.
[8] Александр Семенович Холево,et al. Гауссовские оптимизаторы и проблема аддитивности в квантовой теории информации@@@Gaussian optimizers and the additivity problem in quantum information theory , 2015 .
[9] P. Billingsley,et al. Convergence of Probability Measures , 1970, The Mathematical Gazette.
[10] Michal Horodecki,et al. Towards a Unified Approach to Information-Disturbance Tradeoffs in Quantum Measurements , 2008, Open Syst. Inf. Dyn..
[11] G. Lindblad. Entropy, information and quantum measurements , 1973 .
[12] K. Parthasarathy,et al. Probability measures on metric spaces , 1967 .
[13] M. Shirokov. Reversibility of a quantum channel: general conditions and their applications to Bosonic linear channels , 2012, 1212.2354.
[14] Alexander Semenovich Holevo,et al. On approximation of quantum channels , 2007 .
[15] Александр Семенович Холево,et al. Классические пропускные способности квантового канала с ограничением на входе@@@Entanglement-assisted capacities of constrained quantum channels , 2003 .
[16] Michael D. Westmoreland,et al. Optimal signal ensembles , 1999, quant-ph/9912122.
[17] A. S. Holevo,et al. Entanglement-assisted capacity of constrained channels , 2002, Quantum Informatics.
[18] G. Lindblad. Expectations and entropy inequalities for finite quantum systems , 1974 .
[19] A. Wehrl. General properties of entropy , 1978 .
[20] A. Holevo. Gaussian optimizers and the additivity problem in quantum information theory , 2015, 1501.00652.
[21] M. Wilde. Quantum Information Theory: Noisy Quantum Shannon Theory , 2013 .
[22] E. B. Davies,et al. Information and quantum measurement , 1978, IEEE Trans. Inf. Theory.
[23] A. Holevo. Entanglement-Assisted Capacities of Constrained Quantum Channels , 2004 .
[24] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[25] Mark M. Wilde,et al. Approximate reversibility in the context of entropy gain, information gain, and complete positivity , 2016, 1601.01207.
[26] Peter W. Shor,et al. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.
[27] A. S. Holevo,et al. On the constrained classical capacity of infinite-dimensional covariant quantum channels , 2014, 1409.8085.
[28] A. Holevo,et al. A Solution of Gaussian Optimizer Conjecture for Quantum Channels , 2015 .
[29] Alexander S. Holevo,et al. On classical capacities of infinite-dimensional quantum channels , 2013, Probl. Inf. Transm..
[30] Seth Lloyd,et al. Gaussian quantum information , 2011, 1110.3234.
[31] W. Stinespring. Positive functions on *-algebras , 1955 .
[32] E. Alfsen. Compact convex sets and boundary integrals , 1971 .
[33] Alexander Semenovich Holevo,et al. Continuous Ensembles and the Capacity of Infinite-Dimensional Quantum Channels , 2006 .
[34] A. Holevo,et al. On the entanglement-assisted classical capacity of infinite-dimensional quantum channels , 2012, 1210.6926.
[35] K. Davidson,et al. Transitive Spaces of Operators , 2007, 0706.2449.
[36] Li Nan,et al. Classical and quantum correlative capacities of quantum systems , 2011 .
[37] Максим Евгеньевич Широков,et al. Меры корреляций в бесконечномерных квантовых системах@@@Measures of quantum correlations in infinite-dimensional systems , 2016 .