On lower semicontinuity of the entropic disturbance and its applications in quantum information theory

We prove that for any infinite-dimensional quantum channel the entropic disturbance (defined as difference between the $\chi$-quantity of a generalized ensemble and that of the image of the ensemble under the channel) is lower semicontinuous on the natural set of its definition. We establish a number of useful corollaries of this property, in particular, we prove the continuity of the output $\chi\textrm{-}$quantity and the existence of $\chi$-optimal ensemble for any quantum channel under the energy-type input constraint.

[1]  M. E. Shirokov,et al.  Properties of probability measures on the set of quantum states and their applications , 2006 .

[2]  Maksim E. Shirokov Conditions for coincidence of the classical capacity and entanglement-assisted capacity of a quantum channel , 2012, Probl. Inf. Transm..

[3]  Mark M. Wilde,et al.  From Classical to Quantum Shannon Theory , 2011, ArXiv.

[4]  Александр Семенович Холево,et al.  Непрерывные ансамбли и пропускная способность квантовых каналов бесконечной размерности@@@Continuous ensembles and the capacity of infinite-dimensional quantum channels , 2005 .

[5]  M. Shirokov Measures of correlations in infinite-dimensional quantum systems , 2015, 1506.06377.

[6]  Alexander S. Holevo,et al.  On approximation of infinite-dimensional quantum channels , 2008, Probl. Inf. Transm..

[7]  M. Shirokov Conditions for equality between entanglement-assisted and unassisted classical capacities of a quantum channel , 2011, 1105.1040.

[8]  Александр Семенович Холево,et al.  Гауссовские оптимизаторы и проблема аддитивности в квантовой теории информации@@@Gaussian optimizers and the additivity problem in quantum information theory , 2015 .

[9]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[10]  Michal Horodecki,et al.  Towards a Unified Approach to Information-Disturbance Tradeoffs in Quantum Measurements , 2008, Open Syst. Inf. Dyn..

[11]  G. Lindblad Entropy, information and quantum measurements , 1973 .

[12]  K. Parthasarathy,et al.  Probability measures on metric spaces , 1967 .

[13]  M. Shirokov Reversibility of a quantum channel: general conditions and their applications to Bosonic linear channels , 2012, 1212.2354.

[14]  Alexander Semenovich Holevo,et al.  On approximation of quantum channels , 2007 .

[15]  Александр Семенович Холево,et al.  Классические пропускные способности квантового канала с ограничением на входе@@@Entanglement-assisted capacities of constrained quantum channels , 2003 .

[16]  Michael D. Westmoreland,et al.  Optimal signal ensembles , 1999, quant-ph/9912122.

[17]  A. S. Holevo,et al.  Entanglement-assisted capacity of constrained channels , 2002, Quantum Informatics.

[18]  G. Lindblad Expectations and entropy inequalities for finite quantum systems , 1974 .

[19]  A. Wehrl General properties of entropy , 1978 .

[20]  A. Holevo Gaussian optimizers and the additivity problem in quantum information theory , 2015, 1501.00652.

[21]  M. Wilde Quantum Information Theory: Noisy Quantum Shannon Theory , 2013 .

[22]  E. B. Davies,et al.  Information and quantum measurement , 1978, IEEE Trans. Inf. Theory.

[23]  A. Holevo Entanglement-Assisted Capacities of Constrained Quantum Channels , 2004 .

[24]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[25]  Mark M. Wilde,et al.  Approximate reversibility in the context of entropy gain, information gain, and complete positivity , 2016, 1601.01207.

[26]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[27]  A. S. Holevo,et al.  On the constrained classical capacity of infinite-dimensional covariant quantum channels , 2014, 1409.8085.

[28]  A. Holevo,et al.  A Solution of Gaussian Optimizer Conjecture for Quantum Channels , 2015 .

[29]  Alexander S. Holevo,et al.  On classical capacities of infinite-dimensional quantum channels , 2013, Probl. Inf. Transm..

[30]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[31]  W. Stinespring Positive functions on *-algebras , 1955 .

[32]  E. Alfsen Compact convex sets and boundary integrals , 1971 .

[33]  Alexander Semenovich Holevo,et al.  Continuous Ensembles and the Capacity of Infinite-Dimensional Quantum Channels , 2006 .

[34]  A. Holevo,et al.  On the entanglement-assisted classical capacity of infinite-dimensional quantum channels , 2012, 1210.6926.

[35]  K. Davidson,et al.  Transitive Spaces of Operators , 2007, 0706.2449.

[36]  Li Nan,et al.  Classical and quantum correlative capacities of quantum systems , 2011 .

[37]  Максим Евгеньевич Широков,et al.  Меры корреляций в бесконечномерных квантовых системах@@@Measures of quantum correlations in infinite-dimensional systems , 2016 .