Heterogeneities in the thickness of the elastic lithosphere of Mars - Constraints on heat flow and internal dynamics

Derived values of the thickness of the effective elastic lithosphere on Mars are converted to estimates of lithospheric thermal gradients and surface heat flow by finding the thickness of the elastic-plastic plate having the same bending moment and curvature, subject to assumed strain rates and temperature-dependent flow laws for crustal and mantle material. Local thermal gradients and heat flow values so estimated were 10–14 K km−1 and 25–35 mW m−2, respectively, at the time of formation of flexurally induced graben surrounding the Tharsis Montes and Alba Patera, while gradients and heat flow values of less than 5–6 K km−1 and 17–24 mW m−2, respectively, characterized the lithosphere beneath the Isidis mascon and Olympus Mons at the time of emplacement of these loads. On the basis of the mean global thickness of the elastic lithosphere inferred to support the Tharsis rise and estimates of mantle heat production obtained from SNC meteorites, it is suggested that the present average global heat flux on Mars is in the range 15–25 mW m−2. Approximately 3–5% of this heat flux during the Amazonian epoch has been contributed by excess conducted heat in the central regions of major volcanic provinces. Most likely, this excess heat flux has been delivered to the base of the lithosphere by mantle plumes. The fractional mantle heat transport contributed by plumes during the last 2 b.y. on Mars is therefore similar to that at present on Earth.

[1]  W.H.K. Lee Effects of selective fusion on the thermal history of the Moon, Mars, and Venus , 1968 .

[2]  C. Sagan,et al.  Martian temperatures and thermal properties , 1969 .

[3]  Gene Simmons,et al.  Thermal conductivity of Earth materials at high temperatures , 1972 .

[4]  R. Phillips,et al.  Mars: crustal structure inferred from Bouguer gravity anomalies. , 1973 .

[5]  P. Vogt Volcano height and plate thickness , 1974 .

[6]  M. Toksöz,et al.  The thermal state and internal structure of Mars , 1974 .

[7]  M. Carr Tectonism and volcanism of the Tharsis region of Mars , 1974 .

[8]  M. Toksöz,et al.  Thermal evolutions of the terrestrial planets , 1975 .

[9]  R. Phillips,et al.  The isostatic state of Martian topography , 1975 .

[10]  S. Solomon,et al.  Thermal expansion and thermal stress in the Moon and terrestrial planets; clues to early thermal history , 1976 .

[11]  D. H. Scott,et al.  Geologic map of Mars , 1976 .

[12]  J. Cutts,et al.  Shield volcanism and lithospheric structure beneath the Tharsis plateau, Mars , 1976 .

[13]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[14]  A. Seiff,et al.  Structure of the atmosphere of Mars in summer at mid-latitudes , 1977 .

[15]  J. Watkins,et al.  Age of graben systems on the moon , 1978 .

[16]  Bruce G. Bills,et al.  Mars topography harmonics and geophysical implications , 1978 .

[17]  M. Toksöz,et al.  Thermal history and evolution of Mars , 1978 .

[18]  C. Thurber,et al.  Martian lithospheric thickness from elastic flexure theory , 1978 .

[19]  M. Ashby,et al.  Micromechanisms of flow and fracture, and their relevance to the rheology of the upper mantle , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[20]  Friction of rocks , 1978 .

[21]  C. Goetze The mechanisms of creep in olivine , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[22]  G. Schubert,et al.  Subsolidus convective cooling histories of terrestrial planets , 1979 .

[23]  B. Evans,et al.  The temperature variation of hardness of olivine and its implication for polycrystalline yield stress , 1979 .

[24]  B. Evans,et al.  Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics , 1979 .

[25]  J. G. Caldwell,et al.  Dependence of the thickness of the elastic oceanic lithosphere on age , 1979 .

[26]  D. Turcotte,et al.  Parameterized convection within the moon and the terrestrial planets , 1979 .

[27]  R. Phillips,et al.  An isostatic model for the Tharsis ProvinceMars , 1979 .

[28]  P. Schultz,et al.  Impact crater and basin control of igneous processes on Mars , 1979 .

[29]  W. F. Brace,et al.  Limits on lithospheric stress imposed by laboratory experiments , 1980 .

[30]  J. Head,et al.  Lunar mascon basins - Lava filling, tectonics, and evolution of the lithosphere , 1980 .

[31]  C. Jaupart,et al.  The heat flow through oceanic and continental crust and the heat loss of the Earth , 1980 .

[32]  R. Arvidson,et al.  Martian thermal history, core segregation, and tectonics , 1981 .

[33]  W. L. Sjogren,et al.  Mars: Hellas Planitia gravity analysis , 1981 .

[34]  W. Sjogren,et al.  Mars: Gravity data analysis of the Crater Antoniadi , 1982 .

[35]  Sean C. Solomon,et al.  Evolution of the Tharsis Province of Mars: The importance of heterogeneous lithospheric thickness and volcanic construction , 1982 .

[36]  W. Banerdt,et al.  Mars: The regolith-atmosphere-cap system and climate change , 1982 .

[37]  Roger J. Phillips,et al.  Thick shell tectonics on one-plate planets - Applications to Mars , 1982 .

[38]  M. McNutt,et al.  Constraints on yield strength in the oceanic lithosphere derived from observations of flexure , 1982 .

[39]  Donald L. Turcotte,et al.  The role of lithospheric stress in the support of the Tharsis Rise , 1982 .

[40]  Y. Caristan The transition from high temperature creep to fracture in Maryland diabase , 1982 .

[41]  P. Janle,et al.  Investigation of the isostatic state of the Elysium dome on Mars by gravity models , 1983 .

[42]  T. Watters,et al.  Crosscutting relations and relative ages of ridges and faults in the Tharsis region of Mars , 1983 .

[43]  G. Schubert,et al.  Magnetism and thermal evolution of the terrestrial planets , 1983 .

[44]  Robert O. Pepin,et al.  The case for a martian origin of the shergottites: nitrogen and noble gases in EETA 79001 , 1984 .

[45]  J. Crisp Rates of magma emplacement and volcanic output , 1984 .

[46]  Paul H. Johnson,et al.  Noble gas contents of shergottites and implications for the Martian origin of SNC meteorites , 1984 .

[47]  B. A. Skiff,et al.  Topography of the shield volcano, Olympus Mons on Mars , 1984, Nature.

[48]  M. McNutt Lithospheric flexure and thermal anomalies , 1984 .

[49]  J. Head,et al.  Venus banded terrain: Tectonic models for band formation and their relationship to lithospheric thermal structure , 1984 .

[50]  Harry Y. McSween,et al.  SNC meteorites: Are they Martian rocks? , 1984 .

[51]  S. Solomon,et al.  Source mechanisms of earthquakes near mid-ocean ridges from body waveform inversion - Implications for the early evolution of oceanic lithosphere , 1984 .

[52]  A. Chicarro,et al.  Global and regional ridge patterns on Mars , 1984 .

[53]  N. Kusznir,et al.  Dependence of the flexural rigidity of the continental lithosphere on rheology and temperature , 1985, Nature.

[54]  G. Dreibus,et al.  Mars, a Volatile-Rich Planet , 1985 .

[55]  G. Wetherill,et al.  Occurrence of Giant Impacts During the Growth of the Terrestrial Planets , 1985, Science.

[56]  H. J. Neugebauer,et al.  A thermo-mechanical model of continental lithosphere , 1985, Nature.

[57]  Sean C. Solomon,et al.  Mars: Thickness of the lithosphere from the tectonic response to volcanic loads , 1985 .

[58]  Chreston F. Martin,et al.  Seasat observations of flexure: Evidence for a strong lithosphere , 1985 .

[59]  J. Head,et al.  The evolution of impact basins: Cooling, subsidence, and thermal stress , 1985 .

[60]  Roger J. Phillips,et al.  Gravity and lithospheric stress on the terrestrial planets with reference to the Tharsis Region of Mars , 1985 .

[61]  D. H. Scott,et al.  GEOLOGIC MAP OF THE WESTERN EQUATORIAL REGION OF MARS , 1986 .

[62]  D. Jannsen,et al.  Isostatic gravity and elastic bending models of Olympus Mons, Mars , 1986 .

[63]  Kenneth L. Tanaka The stratigraphy of Mars , 1986 .

[64]  G. Wasserburg,et al.  Formation ages and evolution of Shergotty and its parent planet from U-Th-Pb systematics , 1986 .

[65]  Thomas R. Watters,et al.  Orientation, relative age, and extent of the Tharsis Plateau ridge system. [volcanic and tectonic regions on Mars] , 1986 .

[66]  H. Wänke,et al.  Chemical systematics of the shergotty meteorite and the composition of its parent body (Mars) , 1986 .

[67]  A. Treiman,et al.  Core formation in the Earth and Shergottite Parent Body (SPB): Chemical evidence from basalts☆ , 1986 .

[68]  Ronald Greeley,et al.  Geologic map of the eastern equatorial region of Mars , 1987 .

[69]  R. Greeley Release of Juvenile Water on Mars: Estimated Amounts and Timing Associated with Volcanism , 1987, Science.

[70]  R. Phillips,et al.  Igneous processes and closed system evolution of the Tharsis region of Mars , 1988 .

[71]  T. Maxwell,et al.  Ages of fracturing and resurfacing in the Amenthes region, Mars , 1988 .

[72]  Ronald Greeley,et al.  The resurfacing history of Mars - A synthesis of digitized, viking-based geology , 1988 .

[73]  T. Wong,et al.  Lithospheric flexure and deformation-induced gravity changes: effect of elastic compressibility and gravitation on a multilayered, thick-plate model , 1988 .

[74]  M. McNutt,et al.  Variations of elastic plate thickness at continental thrust belts , 1988 .

[75]  G. Davies,et al.  Ocean bathymetry and mantle convection: 1. Large‐scale flow and hotspots , 1988 .

[76]  J. Holloway,et al.  Martian mantle primary melts - An experimental study of iron-rich garnet lherzolite minimum melt composition , 1988 .

[77]  Norman H. Sleep,et al.  Hotspots and Mantle Plumes' Some Phenomenology , 1990 .