Strategy for Global Optimization and Post-Optimality Using Local Kriging Approximations

by Parveen K. Chandila A strategy for global optimization based upon local approximate optimization has been developed in this research. The global design space is divided into local regions. Accurate Kriging approximations are constructed in the local regions to provide an inexpensive formulation of the system behavior. Each Kriging approximation is validated by using a cross-validation scheme. Gradient based local optimizers are used to identify local optima in each of the regions. A reduced trust region around the local optimum is further analyzed to provide the global optimum solutions. This approach possesses the capability of identifying global optimum solutions within reduced time frames as compared to existing methods. A second investigation focused on the formulation and development of a nonlinear post-optimality analysis. The non-linear response of the system is captured through local approximations. A cumulative approximation is constructed from the local response surface approximations via a blending function. The post-optimal solution is obtained by performing optimization over the cumulative approximation of the objective function and the constraints.

[1]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[2]  John Rasmussen,et al.  Nonlinear programming by cumulative approximation refinement , 1998 .

[3]  K. M. Riley,et al.  Sensitivity of Optimum Solutions of Problem Parameters , 1982 .

[4]  Poul Andersen,et al.  Hydrodynamics of Ship Propellers , 1993 .

[5]  John E. Renaud,et al.  Parallel Processing in Sequential Approximate Optimization , 2002 .

[6]  Pengcheng Liu,et al.  Non-linear multiparameter inversion using a hybrid global search algorithm: applications in reflection seismology , 1995 .

[7]  Christopher R. Houck,et al.  A Genetic Algorithm for Function Optimization: A Matlab Implementation , 2001 .

[8]  Peter J. Fleming,et al.  Genetic Algorithms in Engineering Systems , 1997 .

[9]  J. Sobieszczanski-Sobieski,et al.  Sensitivity of control-augmented structure obtained by a system decomposition method , 1991 .

[10]  R. John Response Surfaces: Designs and Analyses , 1989 .

[11]  J. F. Rodríguez,et al.  Sequential approximate optimization using variable fidelity response surface approximations , 2000 .

[12]  Peiliang Xu A hybrid global optimization method: the one-dimensional case , 2002 .

[13]  Søren Nymand Lophaven,et al.  Aspects of the Matlab toolbox DACE , 2002 .

[14]  John E. Renaud,et al.  An Efficient Strategy for Global Optimization Using Local Kriging Approximations , 2004 .

[15]  Timothy Prestero,et al.  Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle , 2001 .

[16]  Cristina H. Amon,et al.  An engineering design methodology with multistage Bayesian surrogates and optimal sampling , 1996 .

[17]  T. Simpson,et al.  Comparative studies of metamodelling techniques under multiple modelling criteria , 2001 .

[18]  William J. Welch,et al.  Computer experiments and global optimization , 1997 .

[19]  Peiliang Xu A hybrid global optimization method: the multi-dimensional case , 2003 .

[20]  T. Simpson,et al.  A Study on the Use of Kriging Models to Approximate Deterministic Computer Models , 2003, DAC 2003.

[21]  C.-Y. Lin,et al.  Hybrid-coded crossover for binary-coded genetic algorithms in constrained optimization , 2004 .

[22]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[23]  Timothy M. Mauery,et al.  COMPARISON OF RESPONSE SURFACE AND KRIGING MODELS FOR MULTIDISCIPLINARY DESIGN OPTIMIZATION , 1998 .

[24]  Timothy W. Simpson,et al.  Multidisciplinary Robust Design Optimization of an Internal Combustion Engine , 2003 .

[25]  Jay Dean Martin,et al.  A METHODOLOGY FOR EVALUATING SYSTEM-LEVEL UNCERTAINTY IN THE CONCEPTUAL DESIGN OF COMPLEX MULTIDISCIPLINARY SYSTEMS , 2005 .

[26]  Brett Alan Wujek,et al.  Automation enhancements in multidisciplinary design optimization , 1998 .

[27]  T. Simpson,et al.  Computationally Inexpensive Metamodel Assessment Strategies , 2002 .

[28]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[29]  James E. Baker,et al.  Adaptive Selection Methods for Genetic Algorithms , 1985, International Conference on Genetic Algorithms.

[30]  Michael N. Vrahatis,et al.  Evolutionary Operators in Global Optimization with Dynamic Search Trajectories , 2003, Numerical Algorithms.

[31]  L. Watson,et al.  Trust Region Augmented Lagrangian Methods for Sequential Response Surface Approximation and Optimization , 1998 .

[32]  G. Matheron Principles of geostatistics , 1963 .

[33]  L. Watson,et al.  An interior-point sequential approximate optimization methodology , 2004 .

[34]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[35]  Byung Chai Lee,et al.  Development of an efficient algorithm for global optimization by simplex elimination , 2003 .

[36]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[37]  Shawn E. Gano SENSITIVITY OF OPTIMAL CONFORMING AIRFOILS TO EXTERIOR SHAPE , 2022 .

[38]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox , 2002 .

[39]  Marco P. Schoen,et al.  Intelligent optimization techniques, genetic algorithms, tabu search, simulated annealing, and neural networks, D. T. Pham and D. Karaboga, Springer: Berlin, Heidelberg, New York; Springer London: London, 2000, 302pp, ISBN 1‐85233‐028‐7 , 2005 .

[40]  Terence C. Fogarty,et al.  Varying the Probability of Mutation in the Genetic Algorithm , 1989, ICGA.

[41]  M. Sasena,et al.  Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization , 2002 .

[42]  Panos M. Pardalos,et al.  A Collection of Test Problems for Constrained Global Optimization Algorithms , 1990, Lecture Notes in Computer Science.

[43]  Timothy W. Simpson,et al.  Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.

[44]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[45]  Yong Zhang,et al.  Uniform Design: Theory and Application , 2000, Technometrics.

[46]  Timothy W. Simpson,et al.  REQUIREMENTS ON MDO IMPOSED BY THE UNDERSEA VEHICLE CONCEPTUAL DESIGN PROBLEM , 2000 .

[47]  Bernard Yannou,et al.  Metamodeling of Combined Discrete/Continuous Responses , 2001 .

[48]  L. Darrell Whitley,et al.  Optimizing Neural Networks Using FasterMore Accurate Genetic Search , 1989, ICGA.