A survey of the iterative methods for the solution of linear systems by extrapolation, relaxation and other techniques

Abstract For the iterative solution of linear systems of algebraic equations Ax = b(1), with A ∈ C n,n , x, b ∈ C n and det(A) ≠ 0, numerous methods exist. Although a classification of them seems not to be possible one may note that the first step for the construction of an iterative method usually begins with a splitting of A in (1). Thus A is written as A = M − N, where det(M) ≠ 0 and M is easily inverted, so that (1) is equivalent to x = Tx + c (2), T ≔ M−1N, c ≔ M−1. The discussion will be restricted to the so-called linear (stationary) iterative methods, although some nonstationary ones will be mentioned, and emphasis will be given to those which fall into the categories of extrapolation, relaxation and similar ones. For this it will be assumed that the spectrum σ(T) of T in (2) is contained in a well-defined compact region R, whose complement with respect to the complex plane is simply connected, and 1 ∉ R. Under these assumptions and for each specific class of methods described each time an attempt will be made to present the ‘optimum’ one. The optimum is the one out of the class of methods for which the sequence of vectors yielded converges asymptotically to the unique solution of (1) as fast as possible.

[1]  H. Keller,et al.  Analysis of Numerical Methods , 1969 .

[2]  Miroslav Šisler Über die Konvergenz eines zweiparametrigen Iterationsverfahrens , 1973 .

[3]  Apostolos Hadjidimos,et al.  Optimum accelerated overrelaxation method in a special case , 1981 .

[4]  A method for the improvement of the convergence rates of stationary iterative schemes for the solution of complex linear systems , 1986 .

[5]  Nikolaos M. Missirlis Convergence theory of extrapolated iterative methods for a certain class of non-symmetric linear systems , 1984 .

[6]  M. S. Lynn On the equivalence of SOR, SSOR and USSOR as applied to σ1-ordered systems of linear equations , 1964, Comput. J..

[7]  M. Madalena Martins,et al.  On an accelerated overrelaxation iterative method for linear systems with strictly diagonally dominant matrix , 1980 .

[8]  A. Hallett Alternative techniques for solving systems of nonlinear equations , 1982 .

[9]  Apostolos Hadjidimos,et al.  On some extensions of the accelerated overrelaxation (AOR) theory , 1982 .

[10]  Owe Axelsson,et al.  A survey of preconditioned iterative methods for linear systems of algebraic equations , 1985 .

[11]  T. Manteuffel The Tchebychev iteration for nonsymmetric linear systems , 1977 .

[12]  D. Young Iterative methods for solving partial difference equations of elliptic type , 1954 .

[13]  T. Manteuffel Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration , 1978 .

[14]  R. Varga,et al.  Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .

[15]  J. Pillis How to embrace your spectrum for faster iterative results , 1980 .

[16]  M. Madalena Martins Note on irreducible diagonally dominant matrices and the convergence of the AOR iterative method , 1981 .

[17]  David M. Young,et al.  On Richardson's Method for Solving Linear Systems with Positive Definite Matrices , 1953 .

[18]  A. C. Aitken IV.—Studies in Practical Mathematics. V. On the Iterative Solution of a System of Linear Equations , 1950, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.

[19]  E. D'Sylva,et al.  The S.S.O.R. Iteration Scheme for Equations with σ1 Ordering , 1964, Comput. J..

[20]  Apostolos Hadjidimos,et al.  On the Convergence of Some Generalized Iterative Methods , 1986 .

[21]  D. Young,et al.  On the Determination of the Optimum Relaxation Factor for the SOR Method When the Eigenvalues of the Jacobi Method are Complex. , 1970 .

[22]  Apostolos Hadjidimos,et al.  Accelerated overrelaxation method , 1978 .

[23]  Generalized consistent ordering and the optimum successive over-relaxation factor , 1969 .

[24]  S. Frankel Convergence rates of iterative treatments of partial differential equations , 1950 .

[25]  Miroslav Šisler Über die Optimierung eines zweiparametrigen Iterationsverfahrens , 1975 .

[26]  The optimal solution to the problem of complex extrapolation of a first-order scheme , 1984 .

[27]  T. A. Manteuffel Optimal parameters for linear second-degree stationary iterative methods , 1982 .

[28]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .

[29]  Bengt Kredell,et al.  On complex successive overrelaxation , 1962 .

[30]  Richard S. Varga,et al.  Theorems of Stein-Rosenberg Type , 1979 .

[31]  W. Niethammer Relaxation bei komplexen matrizen , 1964 .

[32]  Non-adaptive and adaptive SAOR-CG algorithms , 1985 .

[33]  M. Martins Generalized diagonal dominance in connection with the accelerated overrelaxation (AOR) method , 1982 .

[34]  R. Varga,et al.  p-cyclic matrices and the symmetric successive overrelaxation method , 1984 .

[35]  Richard S. Varga,et al.  $p$-cyclic matrices: A generalization of the Young-Frankel successive overrelaxation scheme. , 1959 .

[36]  Richard S. Varga,et al.  Convergence of block iterative methods applied to sparse least-squares problems , 1984 .

[37]  Apostolos Hadjidimos,et al.  Symmetric accelerated overrelaxation (SAOR) method , 1982 .

[38]  T. Markham,et al.  Convergence of a direct-iterative method for large-scale least-squares problems , 1985 .

[39]  R. V. Southwell,et al.  Relaxation Methods in Theoretical Physics , 1947 .

[40]  A. Ostrowski On the linear iteration procedures for symmetric matrices , 1983 .

[41]  Apostolos Hadjidimos,et al.  The optimal solution of the extrapolation problem of a first order scheme , 1983 .

[42]  A. Hadjidimos,et al.  On the generalisation of the basic iterative methods for the solution of linear systems , 1983 .

[43]  Wilhelm Niethammer,et al.  Iterationsverfahren und allgemeine Euler-Verfahren , 1967 .

[44]  Theodore S. Papatheodorou,et al.  Block AOR iteration for nonsymmetric matrices , 1983 .

[45]  J. Lambert Computational Methods in Ordinary Differential Equations , 1973 .

[46]  Richard S. Varga,et al.  The analysis ofk-step iterative methods for linear systems from summability theory , 1983 .

[47]  A. Hadjidimos,et al.  On different classes of monoparametric stationary iterative methods for the solution of linear systems , 1986 .

[48]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[49]  Apostolos Hadjidimos,et al.  How to improve on the convergence rates of a first order scheme , 1982 .

[50]  A. Hadjidimos Iterative methods for the solution of linear systems , 1989 .

[51]  A. Hadjidimos,et al.  On the convergence of monoparametric k-step iterative euler methods for the solution of linear systems , 1988 .

[52]  H. Coxeter,et al.  Introduction to Geometry , 1964, The Mathematical Gazette.

[53]  G. Avdelas A second order stationary scheme for complex linear systems , 1983 .

[54]  J. H. Verner,et al.  On generalizations of the theory of consistent orderings for successive over-relaxation methods , 1968 .

[55]  D. J. Evans,et al.  On the Convergence of Some Generalized Preconditioned Iterative Methods , 1981 .

[56]  P. Albrecht,et al.  Extrapolated Iterative Methods for Linear Systems Approximation , 1984 .

[57]  W. G. Bickley,et al.  Relaxation Methods in Theoretical Physics , 1947 .

[58]  W. Niethammer On Different Splittings and the Associated Iteration Methods , 1979 .

[59]  A. Hadjidimos,et al.  On the optimization of a class of second order iterative schemes , 1983 .

[60]  Miroslav Šisler Bemerkungen zur Optimierung eines zweiparametrigen Iterationsverfahrens , 1976 .

[61]  Apostolos Hadjidimos,et al.  The principle of extrapolation in connection with the accelerated overrelaxation method , 1980 .

[62]  A. Hadjidimos,et al.  Optimum second order stationary extrapolated iterative schemes , 1983 .

[63]  M. Neumann,et al.  Iterative Methods with k-Part Splittings , 1981 .

[64]  J. Schur,et al.  Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .

[65]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[66]  Martin H. Schultz,et al.  Elliptic problem solvers , 1981 .