Gyrotron-Based Technological Systems for Material Processing—Current Status and Prospects

Among various applications of the gyrotrons to the fundamental physical research and to the high-power terahertz science and technologies, the material treatment based on the irradiation by millimeter and sub-millimeter waves is both one of the oldest and most advanced (industrial grade) technologies. In this paper, we present the recent advancements and the current status of both the development of gyrotron-based technological systems and their utilization for processing of diverse advanced materials. The current status of the work in this broad field worldwide is illustrated mainly by representative results obtained during the longstanding (more than 20 years since 1999) and fruitful collaboration between the Institute of Applied Physics of the Russian Academy of Sciences (IAP-RAS) and Research Center for Development of Far-Infrared Region, University of Fukui (FIR-UF).

[1]  I. Sudiana,et al.  Rapid Sintering of Silica Xerogel Ceramic Derived from Sago Waste Ash Using Sub-millimeter Wave Heating with a 300 GHz CW Gyrotron , 2011 .

[2]  V. L. Bratman,et al.  Gyrotron Development for High Power THz Technologies at IAP RAS , 2012 .

[3]  M. Thumm,et al.  The role of the native oxide shell on the microwave sintering of copper metal powder compacts , 2015 .

[4]  M. Thumm,et al.  Millimeter Wave Sintering of Ceramics , 2007 .

[5]  H. D. Kimrey,et al.  Techniques for ceramic sintering using microwave energy , 1987, 1987 Twelth International Conference on Infrared and Millimeter Waves.

[6]  D. Mansfeld,et al.  The Temperature Behavior of Microwave Absorption of Metal Oxide Powders When Heated by a 263-GHz Gyrotron Radiation , 2019, Journal of Infrared, Millimeter, and Terahertz Waves.

[7]  M. Glyavin,et al.  Recent Progress in K-band Technological Gyrotrons Development , 2019, 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz).

[8]  V. A. Flyagin,et al.  Technological gyrotrons with permanent magnet system , 2000, 25th International Conference on Infrared and Millimeter Waves (Cat. No.00EX442).

[9]  Manfred Thumm,et al.  Sintering of advanced ceramics using a 30-GHz, 10-kW, CW industrial gyrotron , 1999 .

[10]  I. Sudiana,et al.  Densification of Alumina Ceramics Sintered by Using Submillimeter Wave Gyrotron , 2013 .

[11]  K. Rybakov,et al.  Rapid consolidation of hydroxyapatite using intense millimeter-wave radiation , 2020 .

[12]  M. Glyavin,et al.  Ceramics sintering using a 24 GHz gyrotron system , 2004, The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828).

[13]  Manfred Thumm,et al.  Optimal horn antenna design to excite high-order Gaussian beam modes from TE/sub 0m/ smooth circular waveguide modes , 1999 .

[14]  T. Idehara,et al.  Non-thermal effects on B/sub 4/C ceramics sintering , 2005, 2005 Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics.

[15]  Manfred Thumm,et al.  Gyrotrons for technological applications , 1994 .

[16]  T. Idehara,et al.  Gyrotrons for High-Power Terahertz Science and Technology at FIR UF , 2016, 1607.04964.

[17]  R. E. Tressler High-Temperature Stability of Non-Oxide Structural Ceramics , 1993 .

[18]  Svilen Sabchevski,et al.  The Gyrotrons as Promising Radiation Sources for THz Sensing and Imaging , 2020, Applied Sciences.

[19]  I. Sudiana,et al.  The microwave effects on the properties of alumina at high frequencies of microwave sintering , 2016 .

[20]  Toshitaka Idehara,et al.  Development of THz Gyrotrons at IAP RAS and FIR UF and Their Applications in Physical Research and High-Power THz Technologies , 2015, IEEE Transactions on Terahertz Science and Technology.

[21]  M. Kartikeyan,et al.  Design of a 24 GHz, 25-50 kW Technology Gyrotron Operating at the Second Harmonic , 2000 .

[22]  V. A. Flyagin,et al.  The Possibilities of Material Processing by Intense Millimeter - Wave Radiation , 1990 .

[23]  I. Sudiana,et al.  Effect of High-Frequency Microwaves on the Microhardness of Alumina Ceramic , 2016 .

[24]  A. Fliflet,et al.  Material processing system based on a gyrotron powered millimeter-wave beam , 1998, 25th Anniversary, IEEE Conference Record - Abstracts. 1998 IEEE International Conference on Plasma Science (Cat. No.98CH36221).

[25]  I. Sudiana,et al.  Structural and Microwave Properties of Silica Xerogel Glass-Ceramic Sintered by Sub-millimeter Wave Heating using a Gyrotron , 2012 .

[26]  R. Temkin Development of terahertz gyrotrons for spectroscopy at MIT , 2014 .

[27]  I. Sudiana,et al.  Volumetric Microwave Heating of Mullite Ceramic Using a 28 GHz Gyrotron , 2018 .

[28]  Svilen Sabchevski,et al.  The potential of the gyrotrons for development of the sub-terahertz and the terahertz frequency range — A review of novel and prospective applications , 2008 .

[29]  I. Kossyi,et al.  A Subthreshold High-Pressure Discharge Excited by a Microwave Beam: Physical Basics and Applications , 2018, Plasma Physics Reports.

[30]  K. Rybakov,et al.  Fabrication of metal-ceramic functionally graded materials by microwave sintering , 2012, Inorganic Materials: Applied Research.

[31]  I. Sudiana,et al.  High power pulsed submillimeter wave sintering of zirconia ceramics , 2011, 2011 International Conference on Infrared, Millimeter, and Terahertz Waves.

[32]  I. V. Plotnikov,et al.  24-84-GHz gyrotron systems for technological microwave applications , 2003 .

[33]  M. Glyavin,et al.  The K(a)-band 10-kW continuous wave gyrotron with wide-band fast frequency sweep. , 2012, The Review of scientific instruments.

[34]  T. Idehara,et al.  Millimeter and submillimeter wave sintering of ceramics , 2007, 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics.

[35]  K. Rybakov,et al.  Flash Sintering of Oxide Ceramics under Microwave Heating , 2018 .

[36]  K. Rybakov,et al.  Millimeter-Wave Gyrotron System for Research and Application Development. Part 2. High-Temperature Processes in Polycrystalline Dielectric Materials , 2019, Radiophysics and Quantum Electronics.

[37]  Mikhail Yu. Glyavin,et al.  High Temperature Thermal Insulation System for Millimeter Wave Sintering of B4C , 2005 .

[38]  Toshiyuki Kikunaga,et al.  A 28 GHz gyrotron with a permanent magnet system , 1995 .

[39]  K. Rybakov,et al.  Microwave resonant sintering of powder metals , 2018 .

[40]  G. Denisov,et al.  A High-Efficiency Second-Harmonic Gyrotron with a Depressed Collector , 2008 .

[41]  Y. Bykov,et al.  30 and 83 GHz millimeter wave sintering of alumina , 2000 .

[42]  A. Fliflet,et al.  Gyrotron-powered millimeter-wave beam facility for microwave processing of materials , 1999, IEEE Conference Record - Abstracts. 1999 IEEE International Conference on Plasma Science. 26th IEEE International Conference (Cat. No.99CH36297).

[43]  M. Glyavin,et al.  Sintering of high-quality ceramics using a compact gyrotron system , 2003 .

[44]  J. M. Osepchuk,et al.  A History of Microwave Heating Applications , 1984 .

[45]  M. Thumm,et al.  Dilatometric Study and in Situ Resistivity Measurements during Millimeter Wave Sintering of Metal Powder Compacts , 2012 .

[46]  J. Tierney,et al.  Microwave Assisted Organic Synthesis , 2005 .

[47]  H. Hosono,et al.  Rattling of Oxygen Ions in a Sub-Nanometer-Sized Cage Converts Terahertz Radiation to Visible Light. , 2017, ACS nano.

[48]  T. Idehara,et al.  Development of material processing system by using a 300 GHz CW gyrotron , 2006 .

[49]  A. Fliflet,et al.  Pulsed 35 GHz gyrotron with overmoded applicator for sintering ceramic compacts , 1996, IEEE Conference Record - Abstracts. 1996 IEEE International Conference on Plasma Science.

[50]  I. Sudiana,et al.  Grain Growth in Millimeter Wave Sintered Alumina Ceramics , 2013 .

[51]  I. Sudiana,et al.  Synthesis and Characterization of Microwave Sintered Silica Xerogel Produced from Rice Husk Ash , 2016 .

[52]  M. Thumm,et al.  Frequency-tunable CW gyro-BWO with a helically rippled operating waveguide , 2004, IEEE Transactions on Plasma Science.

[53]  T. Idehara,et al.  Development and Application of Gyrotrons at FIR UF , 2018, IEEE Transactions on Plasma Science.

[54]  V. Zapevalov,et al.  High power millimeter and submillimeter wave material processing , 2004, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[55]  G. Denisov,et al.  Millimeter-Wave Gyrotron Research System. I. Description of the Facility , 2019, Radiophysics and Quantum Electronics.

[56]  G. Burdick,et al.  Interaction of Electromagnetic Radiation with Matter , 2018 .

[57]  G. Denisov,et al.  3.5 kW 24 GHz Compact Gyrotron System for Microwave Processing of Materials , 2006 .

[58]  M. Tani,et al.  Strong yellow emission of high-conductivity bulk ZnO single crystals irradiated with high-power gyrotron beam , 2017 .

[59]  Manfred Thumm,et al.  State-of-the-Art of High Power Gyro-Devices and Free Electron Masers. Update 2013 (KIT Scientific Reports ; 7662) , 2014 .

[60]  A. Sinha,et al.  A Review on the Applications of High Power, High Frequency Microwave Source: Gyrotron , 2011 .

[61]  T. Idehara,et al.  Submillimeter wave sintering of pure alumina ceramics , 2010, 35th International Conference on Infrared, Millimeter, and Terahertz Waves.