Hadrontherapy in the world and the programmes of the TERA Foundation.

Hadrontherapy was born in 1938, when neutron beams were used in cancer therapy, but it has become an accepted therapeutical modality only in the last five years. Fast neutrons are still in use, even if their limitations are now apparent. Charged hadron beams are more favorable, since the largest specific energy deposition occurs at the end of their range in matter. The most used hadrons are at present protons and carbon ions. Both allow a dose deposition which conforms to the tumour target. Radiobiological experiments and the results of the first clinical trials indicate that carbon ions have, on top of this macroscopic property, a different way of interacting with cells at the microscopic level. There are thus solid hopes to use carbon beams of about 4500 MeV to control tumours which are radioresistant both to X-rays and protons. After discussing these macroscopic and microscopic properties of hadrontherapy, the hospital-based facilities, running or under construction, are reviewed. The conclusion is that, while in USA and Japan twelve of these centres will be running around the year 2001, in Europe very little is foreseen to use hadrontherapy to treat deep-seated tumours. The most advanced programme is the Italian one, which is described in the last Sections of the report. The main activities concern the construction, near Milano, of a centre for protons and carbon ions called CNAO (National Centre for Oncological Hadrontherapy) and the development of new type of proton accelerators. The Istituto Superiore di Sanita in Rome obtained the initial financing for constructing, in collaboration with ENEA, a 3 GHz linac, which eventually will accelerate protons to 200 MeV, so as to allow deep protontherapy. These, and other hadrontherapy centres in Italy and Europe, will be connected with oncology centres, hospitals and clinics by a multimedial network called RITA, so that before referral each patient's case can be discussed directly by doctors, even located far away, with the experts sitting in the hadrontherapy centres.

[1]  A. Koehler,et al.  Protons in radiation therapy. Comparative dose distributions for protons, photons, and electrons. , 1972, Radiology.

[2]  H. Tsujii,et al.  Clinical results of fractionated proton therapy. , 1993, International journal of radiation oncology, biology, physics.