Macroeconomic Consistency issues in E3 Modeling: The Continued Fable of the Elephant and the Rabbit

Starting from a short presentation of the limits of using conventional production functions to hybridize energy-economy relationships, this paper presents a methodology aiming at a better integration of bottom-up policy scenarios in a top-down static general equilibrium framework. Along the lines of AhmadOs innovation possibility curve, the methodology consists in implementing top-down envelopes of production and demand functions, whose variable point elasticities of substitution provide a flexible interface for calibration on any bottom-up expertise. Numerical experiments assessing the impact of a rising carbon tax on the global 2030 economy compare the application of this methodology to that of two standard CES-based approaches. Results confirm that, in case of large departures from reference scenarios or of strong convexities in bottom-up results, the use of conventional CES production and utility functions may lead to a significant bias in cost assessment.

[1]  E. Berndt,et al.  Technology, Prices, and the Derived Demand for Energy , 1975 .

[2]  Jean Charles Hourcade,et al.  Endogenous Structural Change and Climate Targets Modeling Experiments with Imaclim-R , 2006 .

[3]  Alan S. Manne,et al.  MARKAL-MACRO: An overview , 1992 .

[4]  Robert M. Solow,et al.  Growth Theory and After , 1987 .

[5]  Thomas F. Rutherford,et al.  Global impacts of the Kyoto agreement: results from the MS-MRT model , 1999 .

[6]  D. Weil,et al.  A Contribution to the Empirics of Economic Growth Author ( s ) : , 2008 .

[7]  Dale W. Jorgenson,et al.  Relative Prices and Technical Change , 1983 .

[8]  G. Harcourt,et al.  Retrospectives: Whatever Happened to the Cambridge Capital Theory Controversies? , 2003 .

[9]  Richard S. Eckaus,et al.  The MIT Emissions Prediction and Policy Analysis (EPPA) model : revisions, sensitivities, and comparisons of results , 2001 .

[10]  A. Jaffe,et al.  The energy-efficiency gap What does it mean? , 1994 .

[11]  N. Kousnetzoff Croissance économique mondiale : un scénario de référence à l'horizon 2030 , 2001 .

[12]  M. Frondel,et al.  The Capital-Energy Controversy: An Artifact of Cost Shares? , 2002 .

[13]  J. Hourcade,et al.  Le rôle du changement technique dans le double dividende d'écotaxes , 2000 .

[14]  Jean Charles Hourcade,et al.  Endogenous structural change and climate targets , 2006 .

[15]  Gavin Wright,et al.  The Origins of American Industrial Success, 1879-1940 , 1990 .

[16]  H. J. Herzog,et al.  Representing Energy Technologies in Top-down Economic Models Using Bottom-up Information , 2002 .

[17]  Christoph Böhringer,et al.  The synthesis of bottom-up and top-down in energy policy modeling , 1998 .

[18]  Vernon W. Ruttan,et al.  SOURCES OF TECHNICAL CHANGE: INDUCED INNOVATION, EVOLUTIONARY THEORY AND PATH DEPENDENCE , 1996 .

[19]  P. Wilcoxen,et al.  The Theoretical and Empirical Structure of the G-Cubed Model , 1999 .

[20]  E. Berndt,et al.  Modeling and measuring natural resource substitution , 1981 .

[21]  Andrii Gritsevskyi,et al.  Modeling uncertainty of induced technological change , 2000 .

[22]  John Hicks,et al.  The Theory of Wages , 1933 .

[23]  T. Thomsen Short cuts to dynamic factor demand modelling , 2000 .

[24]  S. Ahmad ON THE THEORY OF INDUCED INNOVATION , 1966 .