Efficient hierarchical matching algorithm for processing uncalibrated stereo vision images and its hardware architecture

In motion estimation, the sub-pixel matching technique involves the search of sub-sample positions as well as integer-sample positions between the image pairs, choosing the one that gives the best match. Based on this idea, this work proposes an estimation algorithm, which performs a 2-D correspondence search using a hierarchical search pattern. The intermediate results are refined by 3-D cellular automata (CA). The disparity value is then defined using the distance of the matching position. Therefore the proposed algorithm can process uncalibrated and non-rectified stereo image pairs, maintaining the computational load within reasonable levels. Additionally, a hardware architecture of the algorithm is deployed. Its performance has been evaluated on both synthetic and real self-captured image sets. Its attributes, make the proposed method suitable for autonomous outdoor robotic applications.

[1]  Rangachar Kasturi,et al.  Machine vision , 1995 .

[2]  Vincenzo Catania,et al.  VLSI hardware architecture for complex fuzzy systems , 1999, IEEE Trans. Fuzzy Syst..

[3]  R. Feynman Simulating physics with computers , 1999 .

[4]  Hong Jeong,et al.  Real-time Stereo Vision FPGA Chip with Low Error Rate , 2007, 2007 International Conference on Multimedia and Ubiquitous Engineering (MUE'07).

[5]  Tomaso Poggio,et al.  Cooperative computation of stereo disparity , 1988 .

[6]  Don Ray Murray,et al.  Stereo vision based mapping and navigation for mobile robots , 1997, Proceedings of International Conference on Robotics and Automation.

[7]  G. Sirakoulis,et al.  Stereo-based terrain traversability analysis for robot navigation , 2009 .

[8]  Ioannis Andreadis,et al.  Design and Implementation of a Fuzzy Area-Based Image-Scaling Technique , 2008, IEEE Transactions on Instrumentation and Measurement.

[9]  Georgios Ch. Sirakoulis,et al.  A CAD system for the construction and VLSI implementation of Cellular Automata algorithms using VHDL , 2003, Microprocess. Microsystems.

[10]  Alonzo Kelly,et al.  Stereo Vision Enhancements for Low-Cost Outdoor Autonomous Vehicles , 1998 .

[11]  Don Ray Murray,et al.  Using Real-Time Stereo Vision for Mobile Robot Navigation , 2000, Auton. Robots.

[12]  In-So Kweon,et al.  Adaptive Support-Weight Approach for Correspondence Search , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems: Index , 1998 .

[14]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[15]  Oliver Schreer Stereo Vision-Based Navigation in Unknown Indoor Environment , 1998, ECCV.

[16]  Horst Bischof,et al.  Hierarchical Disparity Estimation with Programmable 3D Hardware , 2004 .

[17]  Giulio Sandini,et al.  Factors Affecting the Accuracy of an Active Vision Head , 2002, SETN.

[18]  Andrew Hogue,et al.  Underwater environment reconstruction using stereo and inertial data , 2007, 2007 IEEE International Conference on Systems, Man and Cybernetics.

[19]  Georgios Ch. Sirakoulis,et al.  A CAD System for Modeling and Simulation of Computer Networks Using Cellular Automata , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[20]  Antonio Criminisi,et al.  Dense stereo using pivoted dynamic programming , 2004, Image Vis. Comput..

[21]  Robert C. Bolles,et al.  Outdoor Mapping and Navigation Using Stereo Vision , 2006, ISER.

[22]  Antonios Gasteratos,et al.  Review of Stereo Vision Algorithms: From Software to Hardware , 2008 .

[23]  Jill M. Boyce,et al.  Fast mode decision and motion estimation for JVT/H.264 , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[24]  N. Hautiere,et al.  Road Segmentation Supervised by an Extended V-Disparity Algorithm for Autonomous Navigation , 2007, 2007 IEEE Intelligent Vehicles Symposium.

[25]  Jun Zhao,et al.  Global Correlation Based Ground Plane Estimation Using V-Disparity Image , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[26]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[27]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[28]  M. Unser,et al.  Interpolation revisited [medical images application] , 2000, IEEE Transactions on Medical Imaging.

[29]  Georgios Ch. Sirakoulis,et al.  ENHANCEMENT OF FAST ACQUIRED DISPARITY MAPS USING A 1-D CELLULAR AUTOMATON FILTER , 2005 .

[30]  Yiannis Aloimonos,et al.  A Roadmap to the Integration of Early Visual Modules , 2007, International Journal of Computer Vision.

[31]  W. James MacLean,et al.  A Real-Time Large Disparity Range Stereo-System Using FPGAs , 2006, ACCV.

[32]  Rihard Karba,et al.  Wide-angle camera distortions and non-uniform illumination in mobile robot tracking , 2004, Robotics Auton. Syst..

[33]  Robert C. Bolles,et al.  Localization and Mapping for Autonomous Navigation in Outdoor Terrains : A Stereo Vision Approach , 2007, 2007 IEEE Workshop on Applications of Computer Vision (WACV '07).

[34]  Ajay Luthra,et al.  Overview of the H.264/AVC video coding standard , 2003, IEEE Trans. Circuits Syst. Video Technol..

[35]  Libor Preucil,et al.  European Robotics Symposium 2008 , 2008 .

[36]  Hong Jeong,et al.  Generalized Trellis Stereo Matching with Systolic Array , 2004, ISPA.

[37]  Georgios Ch. Sirakoulis,et al.  IARP/EURON Workshop on Robotics for Risky Interventions and Environmental Surveillance , 2009 .

[38]  Georgios Ch. Sirakoulis,et al.  A Dense Stereo Correspondence Algorithm for Hardware Implementation with Enhanced Disparity Selection , 2008, SETN.

[39]  Jean-Philippe Tarel,et al.  Real time obstacle detection in stereovision on non flat road geometry through "v-disparity" representation , 2002, Intelligent Vehicle Symposium, 2002. IEEE.