Primitive Duplicate Hox Clusters in the European Eel's Genome

The enigmatic life cycle and elongated body of the European eel (Anguilla anguilla L., 1758) have long motivated scientific enquiry. Recently, eel research has gained in urgency, as the population has dwindled to the point of critical endangerment. We have assembled a draft genome in order to facilitate advances in all provinces of eel biology. Here, we use the genome to investigate the eel's complement of the Hox developmental transcription factors. We show that unlike any other teleost fish, the eel retains fully populated, duplicate Hox clusters, which originated at the teleost-specific genome duplication. Using mRNA-sequencing and in situ hybridizations, we demonstrate that all copies are expressed in early embryos. Theories of vertebrate evolution predict that the retention of functional, duplicate Hox genes can give rise to additional developmental complexity, which is not immediately apparent in the adult. However, the key morphological innovation elsewhere in the eel's life history coincides with the evolutionary origin of its Hox repertoire.

[1]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[2]  O. Pourquié,et al.  Changes in Hox genes’ structure and function during the evolution of the squamate body plan , 2010, Nature.

[3]  J. Inoue,et al.  Molecular phylogeny and evolution of the freshwater eels genus Anguilla based on the whole mitochondrial genome sequences. , 2005, Molecular phylogenetics and evolution.

[4]  J. Koster,et al.  Extensive Polycistronism and Antisense Transcription in the Mammalian Hox Clusters , 2007, PloS one.

[5]  G. Thillart,et al.  Spawning Migration of the European Eel , 2009 .

[6]  P. Wainwright,et al.  Elongation of the body in eels. , 2010, Integrative and comparative biology.

[7]  G. Wagner,et al.  Hox cluster duplications and the opportunity for evolutionary novelties , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  David Haussler,et al.  Using native and syntenically mapped cDNA alignments to improve de novo gene finding , 2008, Bioinform..

[9]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[10]  W. Hable,et al.  Artificial maturation, fertilization, and early development of the American eel (Anguilla rostrata) , 2010 .

[11]  H. Kagawa,et al.  The first production of glass eel in captivity: fish reproductive physiology facilitates great progress in aquaculture , 2003, Fish Physiology and Biochemistry.

[12]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[13]  Sonja J. Prohaska,et al.  Hox clusters of the bichir (Actinopterygii, Polypterus senegalus) highlight unique patterns of sequence evolution in gnathostome phylogeny. , 2011, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[14]  G. van den Thillart,et al.  First artificial hybrid of the eel species Anguilla australis and Anguilla anguilla , 2011, BMC Developmental Biology.

[15]  Stanley H. Weitzman,et al.  Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bulletin of the AMNH ; v. 131, article 4 , 1967 .

[16]  Y L Wang,et al.  Zebrafish hox clusters and vertebrate genome evolution. , 1998, Science.

[17]  Daniel Chourrout,et al.  Differential evolution of the 13 Atlantic salmon Hox clusters. , 2008, Molecular biology and evolution.

[18]  W. Salzburger,et al.  On the Origin and Trigger of the Notothenioid Adaptive Radiation , 2011, PloS one.

[19]  Charles E. Chapple,et al.  Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype , 2004, Nature.

[20]  Johs. Schmidt Breeding Places and Migrations of the Eel , 1923, Nature.

[21]  A. Durston,et al.  The zebrafish hoxDb cluster has been reduced to a single microRNA , 2006, Nature Genetics.

[22]  Vincent J. Lynch,et al.  Resurrecting the Role of Transcription Factor Change in Developmental Evolution , 2008, Evolution; international journal of organic evolution.

[23]  A. Meyer,et al.  From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[24]  A. Durston,et al.  Axial patterning in snakes and caecilians: evidence for an alternative interpretation of the Hox code. , 2009, Developmental biology.

[25]  David Posada,et al.  ProtTest: selection of best-fit models of protein evolution , 2005, Bioinform..

[26]  Denis Duboule,et al.  The rise and fall of Hox gene clusters , 2007, Development.

[27]  Baocheng Guo,et al.  Hox genes of the Japanese eel Anguilla japonica and Hox cluster evolution in teleosts. , 2009, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[28]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[29]  L. Bernatchez,et al.  All roads lead to home: panmixia of European eel in the Sargasso Sea. , 2011, Molecular ecology.

[30]  Walter Pirovano,et al.  BIOINFORMATICS APPLICATIONS , 2022 .

[31]  J. Inoue,et al.  Mitogenomic evidence for the monophyly of elopomorph fishes (Teleostei) and the evolutionary origin of the leptocephalus larva. , 2004, Molecular phylogenetics and evolution.

[32]  D. Bartel,et al.  MicroRNAs in the Hox network: an apparent link to posterior prevalence , 2008, Nature Reviews Genetics.

[33]  Michael J. Miller,et al.  Deep-ocean origin of the freshwater eels , 2010, Biology Letters.

[34]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[35]  Siv G. E. Andersson,et al.  genoPlotR: comparative gene and genome visualization in R , 2010, Bioinform..

[36]  Axel Meyer,et al.  The evolution and maintenance of Hox gene clusters in vertebrates and the teleost-specific genome duplication. , 2009, The International journal of developmental biology.

[37]  Mark G Thomas,et al.  A new time-scale for ray-finned fish evolution , 2007, Proceedings of the Royal Society B: Biological Sciences.

[38]  Michael J. Miller,et al.  Ecology of Anguilliform Leptocephali: Remarkable Transparent Fish Larvae of the Ocean Surface Layer , 2009 .

[39]  K. Maruyama,et al.  Structure and developmental expression of hatching enzyme genes of the Japanese eel Anguilla japonica: an aspect of the evolution of fish hatching enzyme gene , 2004, Development Genes and Evolution.

[40]  Kim Aarestrup,et al.  Oceanic Spawning Migration of the European Eel (Anguilla anguilla) , 2009, Science.

[41]  J. Ragle,et al.  IUCN Red List of Threatened Species , 2010 .

[42]  Torres,et al.  Leptocephalus energetics: metabolism and excretion. , 1999, The Journal of experimental biology.

[43]  J. S. Nelson,et al.  Fishes of the World, 3rd Edition , 1994 .

[44]  E. M. Pantelouris Eel biology , 1978, Nature.

[45]  J. Postlethwait,et al.  miR-196 regulates axial patterning and pectoral appendage initiation. , 2011, Developmental biology.

[46]  R. K. Koehn,et al.  THE EVOLUTIONARY GENETIC STATUS OF ICELANDIC EELS , 1990, Evolution; international journal of organic evolution.

[47]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[48]  B. Venkatesh,et al.  The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. , 2005, Gene.

[49]  M. Robles,et al.  University of Birmingham High throughput functional annotation and data mining with the Blast2GO suite , 2022 .

[50]  R. Raff Origins of the other metazoan body plans: the evolution of larval forms , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[51]  A. Sidow,et al.  Gene duplications and the origins of vertebrate development. , 1994, Development (Cambridge, England). Supplement.

[52]  J. J. Day,et al.  Fishes of the World, 4th Edition , 2006 .

[53]  E. Pfeiler Developmental physiology of elopomorph leptocephali , 1999 .

[54]  Peter F Stadler,et al.  The "fish-specific" Hox cluster duplication is coincident with the origin of teleosts. , 2006, Molecular biology and evolution.