Primitive Duplicate Hox Clusters in the European Eel's Genome
暂无分享,去创建一个
Katsumi Tsukamoto | Christiaan V. Henkel | Hans J. Jansen | Herman P. Spaink | Sylvie Dufour | Finn-Arne Weltzien | Ron P. Dirks | G. van den Thillart | H. Spaink | H. Jansen | R. Dirks | F. Weltzien | K. Tsukamoto | E. Burgerhout | C. Henkel | S. Dufour | Yuki Minegishi | Guido E. E. J. M. van den Thillart | Erik Burgerhout | Daniëlle L. de Wijze | Y. Minegishi | D. L. de Wijze
[1] Hilla Peretz,et al. Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .
[2] O. Pourquié,et al. Changes in Hox genes’ structure and function during the evolution of the squamate body plan , 2010, Nature.
[3] J. Inoue,et al. Molecular phylogeny and evolution of the freshwater eels genus Anguilla based on the whole mitochondrial genome sequences. , 2005, Molecular phylogenetics and evolution.
[4] J. Koster,et al. Extensive Polycistronism and Antisense Transcription in the Mammalian Hox Clusters , 2007, PloS one.
[5] G. Thillart,et al. Spawning Migration of the European Eel , 2009 .
[6] P. Wainwright,et al. Elongation of the body in eels. , 2010, Integrative and comparative biology.
[7] G. Wagner,et al. Hox cluster duplications and the opportunity for evolutionary novelties , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[8] David Haussler,et al. Using native and syntenically mapped cDNA alignments to improve de novo gene finding , 2008, Bioinform..
[9] Ana Kozomara,et al. miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..
[10] W. Hable,et al. Artificial maturation, fertilization, and early development of the American eel (Anguilla rostrata) , 2010 .
[11] H. Kagawa,et al. The first production of glass eel in captivity: fish reproductive physiology facilitates great progress in aquaculture , 2003, Fish Physiology and Biochemistry.
[12] J. Rougemont,et al. A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.
[13] Sonja J. Prohaska,et al. Hox clusters of the bichir (Actinopterygii, Polypterus senegalus) highlight unique patterns of sequence evolution in gnathostome phylogeny. , 2011, Journal of experimental zoology. Part B, Molecular and developmental evolution.
[14] G. van den Thillart,et al. First artificial hybrid of the eel species Anguilla australis and Anguilla anguilla , 2011, BMC Developmental Biology.
[15] Stanley H. Weitzman,et al. Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bulletin of the AMNH ; v. 131, article 4 , 1967 .
[16] Y L Wang,et al. Zebrafish hox clusters and vertebrate genome evolution. , 1998, Science.
[17] Daniel Chourrout,et al. Differential evolution of the 13 Atlantic salmon Hox clusters. , 2008, Molecular biology and evolution.
[18] W. Salzburger,et al. On the Origin and Trigger of the Notothenioid Adaptive Radiation , 2011, PloS one.
[19] Charles E. Chapple,et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype , 2004, Nature.
[20] Johs. Schmidt. Breeding Places and Migrations of the Eel , 1923, Nature.
[21] A. Durston,et al. The zebrafish hoxDb cluster has been reduced to a single microRNA , 2006, Nature Genetics.
[22] Vincent J. Lynch,et al. Resurrecting the Role of Transcription Factor Change in Developmental Evolution , 2008, Evolution; international journal of organic evolution.
[23] A. Meyer,et al. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.
[24] A. Durston,et al. Axial patterning in snakes and caecilians: evidence for an alternative interpretation of the Hox code. , 2009, Developmental biology.
[25] David Posada,et al. ProtTest: selection of best-fit models of protein evolution , 2005, Bioinform..
[26] Denis Duboule,et al. The rise and fall of Hox gene clusters , 2007, Development.
[27] Baocheng Guo,et al. Hox genes of the Japanese eel Anguilla japonica and Hox cluster evolution in teleosts. , 2009, Journal of experimental zoology. Part B, Molecular and developmental evolution.
[28] Rodrigo Lopez,et al. Clustal W and Clustal X version 2.0 , 2007, Bioinform..
[29] L. Bernatchez,et al. All roads lead to home: panmixia of European eel in the Sargasso Sea. , 2011, Molecular ecology.
[30] Walter Pirovano,et al. BIOINFORMATICS APPLICATIONS , 2022 .
[31] J. Inoue,et al. Mitogenomic evidence for the monophyly of elopomorph fishes (Teleostei) and the evolutionary origin of the leptocephalus larva. , 2004, Molecular phylogenetics and evolution.
[32] D. Bartel,et al. MicroRNAs in the Hox network: an apparent link to posterior prevalence , 2008, Nature Reviews Genetics.
[33] Michael J. Miller,et al. Deep-ocean origin of the freshwater eels , 2010, Biology Letters.
[34] William R. Taylor,et al. The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..
[35] Siv G. E. Andersson,et al. genoPlotR: comparative gene and genome visualization in R , 2010, Bioinform..
[36] Axel Meyer,et al. The evolution and maintenance of Hox gene clusters in vertebrates and the teleost-specific genome duplication. , 2009, The International journal of developmental biology.
[37] Mark G Thomas,et al. A new time-scale for ray-finned fish evolution , 2007, Proceedings of the Royal Society B: Biological Sciences.
[38] Michael J. Miller,et al. Ecology of Anguilliform Leptocephali: Remarkable Transparent Fish Larvae of the Ocean Surface Layer , 2009 .
[39] K. Maruyama,et al. Structure and developmental expression of hatching enzyme genes of the Japanese eel Anguilla japonica: an aspect of the evolution of fish hatching enzyme gene , 2004, Development Genes and Evolution.
[40] Kim Aarestrup,et al. Oceanic Spawning Migration of the European Eel (Anguilla anguilla) , 2009, Science.
[41] J. Ragle,et al. IUCN Red List of Threatened Species , 2010 .
[42] Torres,et al. Leptocephalus energetics: metabolism and excretion. , 1999, The Journal of experimental biology.
[43] J. S. Nelson,et al. Fishes of the World, 3rd Edition , 1994 .
[44] E. M. Pantelouris. Eel biology , 1978, Nature.
[45] J. Postlethwait,et al. miR-196 regulates axial patterning and pectoral appendage initiation. , 2011, Developmental biology.
[46] R. K. Koehn,et al. THE EVOLUTIONARY GENETIC STATUS OF ICELANDIC EELS , 1990, Evolution; international journal of organic evolution.
[47] E. Myers,et al. Basic local alignment search tool. , 1990, Journal of molecular biology.
[48] B. Venkatesh,et al. The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. , 2005, Gene.
[49] M. Robles,et al. University of Birmingham High throughput functional annotation and data mining with the Blast2GO suite , 2022 .
[50] R. Raff. Origins of the other metazoan body plans: the evolution of larval forms , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.
[51] A. Sidow,et al. Gene duplications and the origins of vertebrate development. , 1994, Development (Cambridge, England). Supplement.
[52] J. J. Day,et al. Fishes of the World, 4th Edition , 2006 .
[53] E. Pfeiler. Developmental physiology of elopomorph leptocephali , 1999 .
[54] Peter F Stadler,et al. The "fish-specific" Hox cluster duplication is coincident with the origin of teleosts. , 2006, Molecular biology and evolution.