Generalized Multiple Importance Sampling
暂无分享,去创建一个
David Luengo | V'ictor Elvira | Luca Martino | M'onica F. Bugallo | M. Bugallo | D. Luengo | V. Elvira | L. Martino
[1] Jean-Michel Marin,et al. Convergence of Adaptive Sampling Schemes , 2004 .
[2] Jean-Marie Cornuet,et al. Adaptive Multiple Importance Sampling , 2009, 0907.1254.
[3] J. Marin,et al. Population Monte Carlo , 2004 .
[4] F. Liang. Dynamically Weighted Importance Sampling in Monte Carlo Computation , 2002 .
[5] O. Cappé,et al. Population Monte Carlo , 2004 .
[6] Jukka Corander,et al. Layered adaptive importance sampling , 2015, Statistics and Computing.
[7] A. Owen,et al. Safe and Effective Importance Sampling , 2000 .
[8] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[9] R. Douc,et al. Minimum variance importance sampling via Population Monte Carlo , 2007 .
[10] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[11] R. Douc,et al. Convergence of Adaptive Sampling Schemes , 2007, 0708.0711.
[12] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[13] Mónica F. Bugallo,et al. Heretical Multiple Importance Sampling , 2016, IEEE Signal Processing Letters.
[14] Hera Y. He,et al. Optimal mixture weights in multiple importance sampling , 2014, 1411.3954.
[15] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[16] Luca Martino,et al. Improving population Monte Carlo: Alternative weighting and resampling schemes , 2016, Signal Process..
[17] P. McCullagh,et al. A theory of statistical models for Monte Carlo integration , 2003 .
[18] Leonidas J. Guibas,et al. Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.
[19] Zhiqiang Tan,et al. On a Likelihood Approach for Monte Carlo Integration , 2004 .
[20] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[21] Eric Moulines,et al. Comparison of resampling schemes for particle filtering , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..
[22] T. Hesterberg,et al. Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .
[23] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[24] Petar M. Djuric,et al. Adaptive Importance Sampling: The past, the present, and the future , 2017, IEEE Signal Processing Magazine.
[25] Heikki Haario,et al. Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..
[26] Mónica F. Bugallo,et al. Adaptive importance sampling in signal processing , 2015, Digit. Signal Process..
[27] Jukka Corander,et al. An Adaptive Population Importance Sampler: Learning From Uncertainty , 2015, IEEE Transactions on Signal Processing.
[28] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[29] Mónica F. Bugallo,et al. Efficient Multiple Importance Sampling Estimators , 2015, IEEE Signal Processing Letters.
[30] Jean-Michel Marin,et al. Adaptive importance sampling in general mixture classes , 2007, Stat. Comput..
[31] Jukka Corander,et al. A gradient adaptive population importance sampler , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[32] Jun S. Liu,et al. Sequential Imputations and Bayesian Missing Data Problems , 1994 .
[33] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[34] Philip Wagala Gwanyama. The HM-GM-AM-QM Inequalities , 2004 .
[35] J. Geweke,et al. Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .
[36] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[37] H. Kahn,et al. Methods of Reducing Sample Size in Monte Carlo Computations , 1953, Oper. Res..
[38] Jukka Corander,et al. An adaptive population importance sampler , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[39] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .