2D Knapsack: Packing Squares

In this paper, we study a two-dimensional knapsack problem: packing squares as many as possible into a unit square. Our results are the following: (i) first, we propose an algorithm called IHS(Increasing Height Shelf), and prove that the packing is optimal if there are at most 5 squares packed in an optimal packing, and this upper bound 5 is sharp; (ii) secondly, if all the items have size(side length) at most 1/k, where k ≥ 1 is a constant number, we propose a simple algorithm with an approximation ratio k2+3k+2/k2/k2 in time O(n log n). (iii) finally, we give a PTAS for the general case, and our algorithm is much simpler than the previous approach[16].

[1]  Guochuan Zhang,et al.  Online Removable Square Packing , 2005, Theory of Computing Systems.

[2]  Kazuhisa Makino,et al.  Online Knapsack Problems with Limited Cuts , 2009, ISAAC.

[3]  Klaus Jansen,et al.  A Polynomial Time Approximation Scheme for the Square Packing Problem , 2008, IPCO.

[4]  Dieter Jungnickel,et al.  Approximate minimization algorithms for the 0/1 Knapsack and Subset-Sum Problem , 2000, Oper. Res. Lett..

[5]  J. B. G. Frenk,et al.  Heuristic for the 0-1 Min-Knapsack Problem , 1991, Acta Cybern..

[6]  Kazuhisa Makino,et al.  Online Minimization Knapsack Problem , 2009, WAOA.

[7]  Alberto Caprara,et al.  On the two-dimensional Knapsack Problem , 2004, Oper. Res. Lett..

[8]  George S. Lueker,et al.  Average-case analysis of off-line and on-line knapsack problems , 1995, SODA '95.

[9]  Kazuo Iwama,et al.  Removable Online Knapsack Problems , 2002, ICALP.

[10]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[11]  Rolf Harren Approximation algorithms for orthogonal packing problems for hypercubes , 2009, Theor. Comput. Sci..

[12]  Guochuan Zhang,et al.  Optimal Resource Augmentations for Online Knapsack , 2007, APPROX-RANDOM.

[13]  John Noga,et al.  An online partially fractional knapsack problem , 2005, 8th International Symposium on Parallel Architectures,Algorithms and Networks (ISPAN'05).

[14]  Georgii Gens,et al.  Complexity of approximation algorithms for combinatorial problems: a survey , 1980, SIGA.

[15]  Klaus Jansen,et al.  Packing Weighted Rectangles into a Square , 2005, MFCS.

[16]  Carlo Vercellis,et al.  Stochastic on-line knapsack problems , 1995, Math. Program..

[17]  Klaus Jansen,et al.  Maximizing the Total Profit of Rectangles Packed into a Rectangle , 2007, Algorithmica.

[18]  Takashi Horiyama,et al.  Finite-State Online Algorithms and Their Automated Competitive Analysis , 2006, ISAAC.