New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins.

• Grasses rank among the world's most ecologically and economically important plants. Repeated evolution of the C(4) syndrome has made photosynthesis highly efficient in many grasses, inspiring intensive efforts to engineer the pathway into C(3) crops. However, comparative biology has been of limited use to this endeavor because of uncertainty in the number and phylogenetic placement of C(4) origins. • We built the most comprehensive and robust molecular phylogeny for grasses to date, expanding sampling efforts of a previous working group from 62 to 531 taxa, emphasizing the C(4)-rich PACMAD (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae and Danthonioideae) clade. Our final matrix comprises c. 5700 bp and is > 93% complete. • For the first time, we present strong support for relationships among all the major grass lineages. Several new C(4) lineages are identified, and previously inferred origins confirmed. C(3)/C(4) evolutionary transitions have been highly asymmetrical, with 22-24 inferred origins of the C(4) pathway and only one potential reversal. • Our backbone tree clarifies major outstanding systematic questions and highlights C(3) and C(4) sister taxa for comparative studies. Two lineages have emerged as hotbeds of C(4) evolution. Future work in these lineages will be instrumental in understanding the evolution of this complex trait.

[1]  Stephen A. Smith,et al.  Phylogenetic analyses reveal the shady history of C4 grasses , 2010, Proceedings of the National Academy of Sciences.

[2]  D. Salariato,et al.  Molecular phylogeny of the subtribe Melinidinae (Poaceae: Panicoideae: Paniceae) and evolutionary trends in the homogenization of inflorescences. , 2010, Molecular phylogenetics and evolution.

[3]  V. Savolainen,et al.  Oligocene CO2 Decline Promoted C4 Photosynthesis in Grasses , 2008, Current Biology.

[4]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[5]  F. Zuloaga,et al.  Hopia, a new monotypic genus segregated from Panicum (Poaceae) , 2007 .

[6]  E. Kellogg The Grasses: A Case Study in Macroevolution , 2000 .

[7]  William G. Lee,et al.  Diversification of Chionochloa (Poaceae) and biogeography of the New Zealand Southern Alps , 2010 .

[8]  F. Zuloaga,et al.  Cyphonanthus, a new genus segregated from Panicum (Poaceae: Panicoideae: Paniceae) based on morphological, anatomical and molecular data , 2007 .

[9]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[10]  M. Pagel The Maximum Likelihood Approach to Reconstructing Ancestral Character States of Discrete Characters on Phylogenies , 1999 .

[11]  Marc A Suchard,et al.  Fast, accurate and simulation-free stochastic mapping , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[12]  Nicolas Salamin,et al.  Non-monophyly of the woody bamboos (Bambuseae; Poaceae): a multi-gene region phylogenetic analysis of Bambusoideae s.s. , 2008, Journal of Plant Research.

[13]  H. Linder,et al.  Centropodieae and Ellisochloa, a new tribe and genus in Chloridoideae (Poaceae) , 2011 .

[14]  F. Zuloaga,et al.  Classification and Biogeography of Panicoideae (Poaceae) in the New World , 2007 .

[15]  A. Liston,et al.  Phylogeny and classification of Pinus , 2005 .

[16]  Stephen A. Smith,et al.  The Origins of C4 Grasslands: Integrating Evolutionary and Ecosystem Science , 2010, Science.

[17]  Michael J. Sanderson,et al.  R8s: Inferring Absolute Rates of Molecular Evolution, Divergence times in the Absence of a Molecular Clock , 2003, Bioinform..

[18]  T. Burke,et al.  A molecular phylogeny of the genus Alloteropsis (Panicoideae, Poaceae) suggests an evolutionary reversion from C4 to C3 photosynthesis , 2008, Annals of botany.

[19]  Susanne von Caemmerer,et al.  Faster Rubisco Is the Key to Superior Nitrogen-Use Efficiency in NADP-Malic Enzyme Relative to NAD-Malic Enzyme C4 Grasses1 , 2005, Plant Physiology.

[20]  R. DeFries,et al.  Global distribution of C3 and C4 vegetation: Carbon cycle implications , 2003 .

[21]  K. Hilu,et al.  Phylogenetic structure of the grass subfamily Pooideae based on comparison of plastid matK gene-3'trnK exon and nuclear ITS sequences , 2009 .

[22]  F. Zuloaga,et al.  Phylogenese Studies in the Paniceae (Poaceae-Panicoideae): Ocellochloa, a New Genus from the New World , 2009 .

[23]  L. Tang,et al.  Phylogeny and biogeography of the rice tribe (Oryzeae): evidence from combined analysis of 20 chloroplast fragments. , 2010, Molecular phylogenetics and evolution.

[24]  R. Freckleton,et al.  Can phylogenetics identify C(4) origins and reversals? , 2010, Trends in ecology & evolution.

[25]  F. Woodward,et al.  Drought limitation of photosynthesis differs between C₃and C₄grass species in a comparative experiment. , 2011, Plant, cell & environment.

[26]  F. Zuloaga,et al.  Parodiophyllochloa, a New Genus Segregated from Panicum (Paniceae, Poaceae) Based on Morphological and Molecular Data , 2008 .

[27]  M. Chase,et al.  Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. , 2008, Molecular phylogenetics and evolution.

[28]  E. Kellogg,et al.  Phylogeny of the Paniceae (Poaceae: Panicoideae): integrating plastid DNA sequences and morphology into a new classification , 2012, Cladistics : the international journal of the Willi Hennig Society.

[29]  F. Woodward,et al.  Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. , 2012, The New phytologist.

[30]  Jerrold I. Davis,et al.  Phylogeny of the Grasses (Poaceae) Revisited , 2007 .

[31]  R. Furbank,et al.  C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective. , 2011, Journal of integrative plant biology.

[32]  E. Kellogg,et al.  Parallelism and diversity in multiple origins of C4 photosynthesis in the grass family , 1996 .

[33]  W. D. Clayton,et al.  Genera Graminum: Grasses of the World , 1987 .

[34]  M. Fay Diversity, phylogeny, and evolution in the monocotyledons , 2011 .

[35]  E. Kellogg,et al.  Reinstatement and Emendation of Subfamily Micrairoideae (Poaceae) , 2007 .

[36]  Susanne von Caemmerer,et al.  C4 photosynthetic isotope exchange in NAD-ME- and NADP-ME-type grasses. , 2008, Journal of experimental botany.

[37]  K. Hilu,et al.  A Phylogeny of Chloridoideae (Poaceae) Based on matK Sequences , 2009 .

[38]  Csiro Plant,et al.  C_4 Plants as Biofuel Feedstocks: Optimising Biomass Production and Feedstock Quality from a Lignocellulosic Perspective , 2011 .

[39]  E. Kellogg,et al.  A molecular phylogeny of Panicum (Poaceae: Paniceae): tests of monophyly and phylogenetic placement within the Panicoideae. , 2003, American journal of botany.

[40]  R. Sage,et al.  The evolution of C4 photosynthesis. , 2004, The New phytologist.

[41]  W. Maddison CONFOUNDING ASYMMETRIES IN EVOLUTIONARY DIVERSIFICATION AND CHARACTER CHANGE , 2006, Evolution; international journal of organic evolution.

[42]  R. Soreng,et al.  Phylogenetics of the Grass _Aveneae-Type Plastid DNA Clade_ (Poaceae: Pooideae, Poeae) Based on Plastid and Nuclear Ribosomal DNA Sequence Data , 2010 .

[43]  E. Kellogg,et al.  A Phylogeny of Setaria (Poaceae, Panicoideae, Paniceae) and Related Genera Based on the Chloroplast Gene ndhF , 2009, International Journal of Plant Sciences.

[44]  O. Nedvěd,et al.  Phylogeny and Classification , 2001, The Sesiidae of Europe.

[45]  M. J. Dallwitz,et al.  Grass Genera of the World , 1992 .

[46]  C. Osborne,et al.  Molecular phylogenies disprove a hypothesized C4 reversion in Eragrostis walteri (Poaceae). , 2011, Annals of botany.

[47]  R. Sage The evolution of C 4 photosynthesis , 2003 .

[48]  J. Wendel,et al.  A Phylogeny of the Grass Family (Poaceae) Based on ndhF Sequence Data , 1995 .

[49]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[50]  R. Sage,et al.  COMPLEX EVOLUTIONARY TRANSITIONS AND THE SIGNIFICANCE OF C3–C4 INTERMEDIATE FORMS OF PHOTOSYNTHESIS IN MOLLUGINACEAE , 2011, Evolution; international journal of organic evolution.

[51]  O. Morrone,et al.  On the Taxonomic Position of Panicum aristellum (Poaceae: Panicoideae: Paniceae) , 2006 .

[52]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[53]  F. Zuloaga,et al.  Phylogenetic Studies in the Paniceae (Poaceae): a Realignment of Section Lorea of Panicum , 2008 .

[54]  Richard G FitzJohn,et al.  Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. , 2009, Systematic biology.

[55]  Genera graminum: Grasses of the World , 1987 .

[56]  R. Freckleton,et al.  Ecological selection pressures for C4 photosynthesis in the grasses , 2009, Proceedings of the Royal Society B: Biological Sciences.

[57]  Nicolas Salamin,et al.  Building supertrees: an empirical assessment using the grass family (Poaceae). , 2002, Systematic biology.

[58]  E. Kellogg,et al.  Integrating Phylogeny into Studies of C4 Variation in the Grasses , 2009, Plant Physiology.

[59]  K. H. Asay,et al.  A Molecular Phylogeny of the Grass Family (Poaceae) Based on the Sequences of Nuclear Ribosomal DNA (ITS) , 1998 .

[60]  Peter E Midford,et al.  Estimating a binary character's effect on speciation and extinction. , 2007, Systematic biology.

[61]  P. Peterson,et al.  A phylogeny and classification of the Muhlenbergiinae (Poaceae: Chloridoideae: Cynodonteae) based on plastid and nuclear DNA sequences. , 2010, American journal of botany.

[62]  Jerrold I. Davis,et al.  Phylogeny and subfamilial classification of the grasses (Poaceae) , 2001 .

[63]  E. Kellogg,et al.  A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. , 2001, American journal of botany.

[64]  P. Christin,et al.  Two independent C4 origins in Aristidoideae (Poaceae) revealed by the recruitment of distinct phosphoenolpyruvate carboxylase genes. , 2009, American journal of botany.

[65]  K. Hilu,et al.  Phylogeny of Poaceae Inferred from matK Sequences , 1999 .

[66]  E. Harley,et al.  Polyphyly of Arundinoideae (Poaceae): Evidence from rbcL Sequence Data , 1995 .

[67]  V. Savolainen,et al.  C4 Photosynthesis Evolved in Grasses via Parallel Adaptive Genetic Changes , 2007, Current Biology.

[68]  T. Hodkinson,et al.  Phylogenetics of Panicoideae (Poaceae) based on chloroplast and nuclear DNA sequences , 2011 .

[69]  S. Kelchner The Evolution of Non-Coding Chloroplast DNA and Its Application in Plant Systematics , 2000 .

[70]  E. Kellogg,et al.  The age of the grasses and clusters of origins of C4 photosynthesis , 2008 .

[71]  S. Mathews,et al.  The phytochrome gene family in grasses (Poaceae): a phylogeny and evidence that grasses have a subset of the loci found in dicot angiosperms. , 1996, Molecular biology and evolution.

[72]  E. G. Strauss,et al.  Molecular phylogeny , 1992, Current Biology.

[73]  H. Linder,et al.  Sequences of the grass-specific insert in the chloroplast rpoC2 gene elucidate generic relationships of the Arundinoideae (Poaceae) , 1998 .

[74]  J. Moncalvo,et al.  Phylogeny of Flaveria (Asteraceae) and inference of C4 photosynthesis evolution. , 2005, American journal of botany.

[75]  Jerrold I. Davis,et al.  Phylogenetics and character evolution in the grass family (Poaceae): Simultaneous analysis of morphological and Chloroplast DNA restriction site character sets , 2008, The Botanical Review.

[76]  F. Zuloaga,et al.  A phylogenetic evaluation of Panicum sects. Agrostoidea, Megista, Prionitia and Tenera (Panicoideae, Poaceae): Two new genera, Stephostachys and Sorengia , 2010 .