Disk Dissipation, Giant Planet Formation, and Star Formation Rate Fluctuations in the 3 Myr History of Gould’s Belt

Although episodic star formation (SF) has been suggested for nearby SF regions, a panoramic view of the recent episodic SF history in the solar neighborhood is still missing. By uniformly constraining the slope α of infrared spectral energy distributions (SEDs) of young stellar objects (YSOs) in the 13 largest Gould’s Belt (GB) protoclusters surveyed by the Spitzer Space Telescope, we have constructed a cluster-averaged histogram of α representing the YSO evolution lifetime as a function of the α value. Complementary to the traditional SED classification scheme (0, i, f, ii, and iii) that is based on different α values, a staging scheme (A, B, C, D, and E) of SED evolution is proposed on the basis of the α statistical features that can be better matched to the physical stages of disk dissipation and giant planet formation. This has also allowed us to unravel the fluctuations of SF rate (SFR) in the 3 Myr history of these GB protoclusters. Diverse evolutionary patterns such as single peaks, double peaks, and ongoing acceleration of SFR are revealed. The SFR fluctuations are between 20% and 60% (∼40% on average) and no dependence on the average SFR or the number of SFR episodes is found. However, spatially close protoclusters tend to have similar SFR fluctuation trends, indicating that the driving force of the fluctuations should be at size scales beyond the typical cluster sizes of several parsecs.

[1]  M. Kounkel,et al.  Low Mass Stars as Tracers of Star and Cluster Formation , 2022, Publications of the Astronomical Society of the Pacific.

[2]  B. Ercolano,et al.  The dispersal of protoplanetary discs – II: photoevaporation models with observationally derived irradiating spectra , 2021, Monthly Notices of the Royal Astronomical Society.

[3]  J. J. González-Vidal,et al.  Gaia Early Data Release 3 , 2020, Astronomy & Astrophysics.

[4]  E. Bertin,et al.  Lupus DANCe , 2020, 2010.00233.

[5]  N. van der Marel,et al.  Dust-depleted Inner Disks in a Large Sample of Transition Disks through Long-baseline ALMA Observations , 2020, The Astrophysical Journal.

[6]  G. Herczeg,et al.  An Initial Overview of the Extent and Structure of Recent Star Formation within the Serpens Molecular Cloud Using Gaia Data Release 2 , 2019, The Astrophysical Journal.

[7]  Luca Ricci,et al.  The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, Sample, Calibration, and Overview , 2018, The Astrophysical Journal.

[8]  F. Ménard,et al.  Gaps and Rings in an ALMA Survey of Disks in the Taurus Star-forming Region , 2018, The Astrophysical Journal.

[9]  G. Carraro,et al.  A sextet of clusters in the Vela OB2 region revealed by Gaia , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[10]  E. Feigelson,et al.  The APOGEE-2 Survey of the Orion Star-forming Complex. II. Six-dimensional Structure , 2018, The Astronomical Journal.

[11]  E. Feigelson,et al.  Circumstellar disc lifetimes in numerous galactic young stellar clusters , 2018, 1804.05076.

[12]  J. Walsh,et al.  A Tale of Three Cities: OmegaCAM discovers multiple sequences in the color-magnitude diagram of the Orion Nebula Cluster , 2017, 1705.09496.

[13]  B. Ercolano,et al.  The dispersal of planet-forming discs: theory confronts observations , 2017, Royal Society Open Science.

[14]  Brendan P. Bowler,et al.  Imaging Extrasolar Giant Planets , 2016, 1605.02731.

[15]  James E. Owen,et al.  The Origin and Evolution of Transition Discs: Successes, Problems, and Open Questions , 2015, Publications of the Astronomical Society of Australia.

[16]  A. Skemer,et al.  Accreting protoplanets in the LkCa 15 transition disk , 2015, Nature.

[17]  B. Ercolano,et al.  The long-term evolution of photoevaporating transition discs with giant planets , 2015, 1509.04278.

[18]  D. Johnstone,et al.  YOUNG STELLAR OBJECTS IN THE GOULD BELT , 2015, 1508.03199.

[19]  A. Johansen,et al.  The growth of planets by pebble accretion in evolving protoplanetary discs , 2015 .

[20]  J. R. Martínez-Galarza,et al.  A WISE CENSUS OF YOUNG STELLAR OBJECTS IN THE PERSEUS OB2 ASSOCIATION , 2015, 1507.02966.

[21]  Dublin Institute for Advanced Studies,et al.  Gas content of transitional disks: a VLT/X-Shooter study of accretion and winds , 2014, 1406.1428.

[22]  H. Bouy,et al.  Disk evolution in the solar neighborhood - I. Disk frequencies from 1 to 100 Myr , 2013, 1312.0609.

[23]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[24]  S. Lai,et al.  POPULATIONS OF YOUNG STELLAR OBJECTS IN NEARBY MOLECULAR CLOUDS , 2013, 1301.5426.

[25]  B. Ercolano,et al.  The interplay between X-ray photoevaporation and planet formation , 2013, 1301.3015.

[26]  K. Flaherty,et al.  THE SPITZER SPACE TELESCOPE SURVEY OF THE ORION A AND B MOLECULAR CLOUDS. I. A CENSUS OF DUSTY YOUNG STELLAR OBJECTS AND A STUDY OF THEIR MID-INFRARED VARIABILITY , 2012, 1209.3826.

[27]  Michiel Lambrechts,et al.  Rapid growth of gas-giant cores by pebble accretion , 2012, 1205.3030.

[28]  H. Bouy,et al.  Spectroscopy of new brown dwarf members of ρ Ophiuchi and an updated initial mass function , 2012, 1201.1912.

[29]  Jonathan P. Williams,et al.  Protoplanetary Disks and Their Evolution , 2011, 1103.0556.

[30]  L. Hartmann,et al.  THE DISK POPULATION OF THE TAURUS STAR-FORMING REGION , 2009, 0911.5457.

[31]  S. Wolf,et al.  THE TAURUS SPITZER SURVEY: NEW CANDIDATE TAURUS MEMBERS SELECTED USING SENSITIVE MID-INFRARED PHOTOMETRY , 2009, 0911.3176.

[32]  Ireland,et al.  THE SPITZER SURVEY OF INTERSTELLAR CLOUDS IN THE GOULD BELT. II. THE CEPHEUS FLARE OBSERVED WITH IRAC AND MIPS , 2009, 0903.4063.

[33]  D. Padgett,et al.  THE SPITZER c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES , 2008, 0811.1059.

[34]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[35]  T. Henning,et al.  Very Low Mass Objects in the Coronet Cluster: The Realm of the Transition Disks , 2008, 0807.2504.

[36]  R. A. Gutermuth,et al.  The Disk Population of the Chamaeleon I Star-forming Region , 2008, 0803.1019.

[37]  K. Stapelfeldt,et al.  The Young Population of the Chamaeleon II Dark Cloud , 2008, 0802.4351.

[38]  C. Dullemond,et al.  Characterizing the nature of embedded young stellar objects through silicate, ice and millimeter observations , 2008, 0801.4139.

[39]  D. Padgett,et al.  The Spitzer c2d Survey of Weak-Line T Tauri Stars. II. New Constraints on the Timescale for Planet Building , 2007, 0706.0563.

[40]  Stephen E. Strom,et al.  Demographics of Transition Objects , 2007, 0704.1681.

[41]  B. Merín,et al.  The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. IX. The Serpens YSO Population as Observed with IRAC and MIPS , 2007, 0704.0009.

[42]  A. Crida,et al.  Cavity opening by a giant planet in a protoplanetary disc and effects on planetary migration , 2007, astro-ph/0703151.

[43]  G. Lodato,et al.  Dust filtration at gap edges: Implications for the spectral energy distributions of discs with embedded planets , 2006, astro-ph/0609808.

[44]  Ithaca,et al.  A Survey and Analysis of Spitzer Infrared Spectrograph Spectra of T Tauri Stars in Taurus , 2006, astro-ph/0608038.

[45]  C. Clarke,et al.  Photoevaporation of protoplanetary discs - II. Evolutionary models and observable properties , 2006, astro-ph/0603254.

[46]  E. Huff,et al.  Star Formation in Space and Time: The Orion Nebula Cluster , 2006, astro-ph/0603138.

[47]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[48]  A. Crida,et al.  On the width and shape of gaps in protoplanetary disks , 2005, astro-ph/0511082.

[49]  G. Rieke,et al.  Spitzer Observations of IC 348: The Disk Population at 2-3 Million Years , 2005, astro-ph/0511638.

[50]  E. Blackman,et al.  Planets Rapidly Create Holes in Young Circumstellar Disks , 2005, astro-ph/0510235.

[51]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[52]  W. Benz,et al.  Models of giant planet formation with migration and disc evolution , 2004, astro-ph/0412444.

[53]  C. Dominik,et al.  Dust coagulation in protoplanetary disks: A rapid depletion of small grains , 2004, astro-ph/0412117.

[54]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[55]  C. Dominik,et al.  Flaring vs. self-shadowed disks: The SEDs of Herbig Ae/Be stars , 2004, astro-ph/0401495.

[56]  K. Wood,et al.  Two-dimensional Radiative Transfer in Protostellar Envelopes. II. An Evolutionary Sequence , 2003, astro-ph/0309007.

[57]  L. Allen,et al.  A Catalog of Young Stellar Groups and Clusters within 1 Kiloparsec of the Sun , 2003, astro-ph/0307510.

[58]  P. Armitage,et al.  Constraints on a planetary origin for the gap in the protoplanetary disc of GM Aurigae , 2003, astro-ph/0302204.

[59]  C. Lada,et al.  Embedded Clusters in Molecular Clouds , 2003, astro-ph/0301540.

[60]  C. Lada,et al.  Infrared Signatures of Protoplanetary Disk Evolution , 2001, astro-ph/0111283.

[61]  C. Clarke,et al.  The dispersal of circumstellar discs: the role of the ultraviolet switch , 2001 .

[62]  C. Dominik,et al.  Passive Irradiated Circumstellar Disks with an Inner Hole , 2001, astro-ph/0106470.

[63]  Elizabeth A. Lada,et al.  Disk Frequencies and Lifetimes in Young Clusters , 2001, astro-ph/0104347.

[64]  L. Hartmann,et al.  Accretion Disks around Young Objects. III. Grain Growth , 2001, astro-ph/0101443.

[65]  F. Palla,et al.  Accelerating Star Formation in Clusters and Associations , 2000 .

[66]  J. Weingartner,et al.  Dust Grain Size Distributions and Extinction in the Milky Way, LMC, and SMC , 2000, astro-ph/0008146.

[67]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[68]  E. Young,et al.  Further Mid-Infrared Study of the rho Ophiuchi Cloud Young Stellar Population: Luminosities and Masses of Pre--Main-Sequence Stars , 1994 .

[69]  P. Andre',et al.  Submillimeter Continuum Observations of rho Ophiuchi A: The Candidate Protostar VLA 1623 and Prestellar Clumps , 1993 .

[70]  M. Skrutskie,et al.  A sensitive 10-micron search for emission arising from circumstellar dust associated with solar-type pre-main-sequence stars , 1990 .

[71]  E. Young,et al.  IRAS Observations of the Rho Ophiuchi Infrared Cluster: Spectral Energy Distributions and Luminosity Function , 1989 .

[72]  Michael F. Skrutskie,et al.  Circumstellar Material Associated with Solar-Type Pre-Main-Sequence Stars: A Possible Constraint on the Timescale for Planet Building , 1989 .

[73]  C. Lada,et al.  Spectral evolution of young stellar objects , 1986 .

[74]  J. Hartigan,et al.  The Dip Test of Unimodality , 1985 .