Application of Classical Hermitian Self-Orthogonal MDS Codes to Quantum MDS Codes

In this paper, we first construct several classes of classical Hermitian self-orthogonal maximum distance separable (MDS) codes. Through these classical codes, we are able to obtain various quantum MDS codes. It turns out that many of our quantum codes are new in the sense that the parameters of our quantum codes cannot be obtained from all previous constructions.

[1]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  Zongben Xu,et al.  On [[n,n-4,3]]q Quantum MDS Codes for odd prime power q , 2009, ArXiv.

[3]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[4]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[5]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[6]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[7]  Hao Chen,et al.  Quantum codes from concatenated algebraic-geometric codes , 2005, IEEE Transactions on Information Theory.

[8]  Rudolf Lide,et al.  Finite fields , 1983 .

[9]  Pradeep Kiran Sarvepalli,et al.  Nonbinary quantum Reed-Muller codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[10]  T. Beth,et al.  Quantum BCH Codes , 1999, quant-ph/9910060.

[11]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[12]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[13]  Raymond Laflamme,et al.  A Theory of Quantum Error-Correcting Codes , 1996 .

[14]  T. Beth,et al.  On optimal quantum codes , 2003, quant-ph/0312164.

[15]  Chaoping Xing,et al.  Coding Theory: A First Course , 2004 .

[16]  Qing Chen,et al.  Graphical Nonbinary Quantum Error-Correcting Codes , 2008 .

[17]  Simon Litsyn,et al.  Upper Bounds on the Size of Quantum Codes , 1999, IEEE Trans. Inf. Theory.

[18]  Y. Edel,et al.  Quantum twisted codes , 2000 .

[19]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[20]  Zhuo Li,et al.  A Family of Asymptotically Good Quantum Codes Based on Code Concatenation , 2008, IEEE Transactions on Information Theory.

[21]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[22]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[23]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[24]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[25]  Chaoping Xing,et al.  Coding Theory: Index , 2004 .

[26]  Keqin Feng,et al.  Quantum codes [[6, 2, 3]]p and [[7, 3, 3]]p (p >= 3) exist , 2002, IEEE Trans. Inf. Theory.

[27]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[28]  H. Chau Five quantum register error correction code for higher spin systems , 1997, quant-ph/9702033.

[29]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[30]  N. Sloane,et al.  Quantum Error Correction Via Codes Over GF , 1998 .

[31]  Zhuo Li,et al.  Quantum generalized Reed-Solomon codes: Unified framework for quantum MDS codes , 2008, ArXiv.