Realizations of conformal current-type Lie algebras

In this paper we obtain the realizations of some infinite-dimensional Lie algebras, named “conformal current-type Lie algebras,” in terms of a two-dimensional Novikov algebra and its deformations. Furthermore, Ovsienko and Roger’s loop cotangent Virasoro algebra, which can be regarded as a nice generalization of the Virasoro algebra with two space variables, is naturally realized as an affinization of the tensor product of a deformation of the two-dimensional Novikov algebra and the Laurent polynomial algebra. These realizations shed new light on various aspects of the structure and representation theory of the corresponding infinite-dimensional Lie algebras.

[1]  Cuipo Jiang,et al.  Low-Dimensional Cohomology Groups of the Lie Algebras W(a, b) , 2011 .

[2]  Xiangqian Guo,et al.  Classification of irreducible Harish-Chandra modules over the loop-Virasoro algebra , 2008, 0801.4217.

[3]  Cuipo Jiang,et al.  Harish-Chandra modules over the twisted Heisenberg-Virasoro algebra , 2008, 0801.2806.

[4]  C. Dong,et al.  W-Algebra W(2, 2) and the Vertex Operator Algebra $${L(\frac{1}{2},\,0)\,\otimes\, L(\frac{1}{2},\,0)}$$ , 2007, 0711.4624.

[5]  Cuipo Jiang,et al.  Representations of the Twisted Heisenberg–Virasoro Algebra and the Full Toroidal Lie Algebras , 2007 .

[6]  J. Unterberger,et al.  The Schrödinger-Virasoro Lie Group and Algebra: Representation Theory and Cohomological Study , 2006 .

[7]  J. Duncan Moonshine for Rudvalis's sporadic group II , 2006, math/0611355.

[8]  V. Ovsienko,et al.  Looped Cotangent Virasoro Algebra and Non-Linear Integrable Systems in Dimension 2 + 1 , 2006, math-ph/0602043.

[9]  Qifen Jiang,et al.  Verma Modules Over the Generalized Heisenberg–Virasoro Algebra , 2005, math/0511494.

[10]  K. Zhao,et al.  CLASSIFICATION OF IRREDUCIBLE WEIGHT MODULES OVER THE TWISTED HEISENBERG-VIRASORO ALGEBRA , 2005, math/0510194.

[11]  Y. Billig A category of modules for the full toroidal Lie algebra , 2005, math/0509368.

[12]  Dietrich Burde,et al.  Left-symmetric algebras, or pre-Lie algebras in geometry and physics , 2005, math-ph/0509016.

[13]  P. Guha Geodesic flow on (super-) Bott–Virasoro group and Harry Dym family , 2004 .

[14]  C. Bai,et al.  The automorphisms of Novikov algebras in low dimensions , 2003 .

[15]  Y. Billig Representations of the Twisted Heisenberg–Virasoro Algebra at Level Zero , 2002, Canadian Mathematical Bulletin.

[16]  C. Bai,et al.  On the realization of transitive Novikov algebras , 2001 .

[17]  C. Bai,et al.  The classification of Novikov algebras in low dimensions , 2001 .

[18]  Patrick Marcel Generalizations of the Virasoro algebra and matrix Sturm–Liouville operators , 2000 .

[19]  P. Guha Integrable Geodesic Flows on the (Super)extension of the Bott–Virasoro Group , 2000 .

[20]  Patrick Marcel Extensions of the Neveu–Schwarz Lie Superalgebra , 1999 .

[21]  V. Ovsienko,et al.  Generalizations of Virasoro group and Virasoro algebra through extensions by modules of tensor-densities on S1 , 1998 .

[22]  Liangyun Chen Differential operator Lie algebras on the ring of Laurent polynomials , 1995 .

[23]  Han-Ying Guo,et al.  Beltrami algebra and symmetry of the Beltrami equation on Riemann surfaces , 1990 .

[24]  I. V. Mikityuk Unitary representations of the generalized Virasoro current algebra , 1990 .

[25]  A. Beilinson,et al.  Determinant bundles and Virasoro algebras , 1988 .

[26]  P. Furlan,et al.  Minimal models of U(1) conformal current algebra , 1988 .

[27]  V. Kac,et al.  Moduli spaces of curves and representation theory , 1988 .

[28]  I. Gel'fand,et al.  Hamiltonian operators and algebraic structures related to them , 1979 .