Efficient Generation of Stable Planar Cages for Chemistry

In this paper we describe an algorithm which generates all colored planar maps with a good minimum sparsity from simple motifs and rules to connect them. An implementation of this algorithm is available and is used by chemists who want to quickly generate all sound molecules they can obtain by mixing some basic components.

[1]  R. Cori,et al.  Planar Maps are Well Labeled Trees , 1981, Canadian Journal of Mathematics.

[2]  Andrew I. Cooper,et al.  Porous Organic Molecules , 2011 .

[3]  Cynthia A. Phillips,et al.  Finding minimum-quotient cuts in planar graphs , 1993, STOC.

[4]  B. McKay,et al.  Fast generation of planar graphs , 2007 .

[5]  Dominique Barth,et al.  Map Generation for CO 2 Cages , 2012, ISCIS.

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  Brendan D. McKay,et al.  The smallest non-hamiltonian 3-connected cubic planar graphs have 38 vertices , 1988, J. Comb. Theory, Ser. B.

[8]  Valery A. Liskovets,et al.  Enumeration of nonisomorphic planar maps , 1981, J. Graph Theory.

[9]  Nutan Limaye,et al.  Planar Graph Isomorphism is in Log-Space , 2009, 2009 24th Annual IEEE Conference on Computational Complexity.

[10]  Yann Strozecki,et al.  Enumeration complexity and matroid decomposition , 2010 .

[11]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[12]  Brendan D. McKay,et al.  Cycles Through 23 Vertices in 3-Connected Cubic Planar Graphs , 1999, Graphs Comb..

[13]  Lawrence B. Holder,et al.  Journal of Graph Algorithms and Applications Algorithm and Experiments in Testing Planar Graphs for Isomorphism , 2022 .

[14]  John E. Hopcroft,et al.  Linear time algorithm for isomorphism of planar graphs (Preliminary Report) , 1974, STOC '74.

[15]  L. Weinberg,et al.  A Simple and Efficient Algorithm for Determining Isomorphism of Planar Triply Connected Graphs , 1966 .

[16]  Frank Ruskey,et al.  The advantages of forward thinking in generating rooted and free trees , 1999, SODA '99.

[17]  G. Brinkmann,et al.  CaGe - a Virtual Environment for Studying Some Special Classes of Plane Graphs - an Update , 2010 .

[18]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .