The Learning Problem

In general, Learning can be defined as the modification of a behavior tendency according to experiences which have been acquired. Thus, Learning embeds distinctive attributes of intelligent behavior. Machine Learning is the study of how to develop algorithms, computer applications, and systems that have the ability to learn and, thus, improve through experience their performance at some tasks. This chapter presents the formalization of the Machine Learning Problem.

[1]  Matthieu Cord,et al.  Machine Learning Techniques for Multimedia: Case Studies on Organization and Retrieval , 2009, J. Electronic Imaging.

[2]  Vladimir Vapnik,et al.  An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.

[3]  Nathalie Japkowicz,et al.  The class imbalance problem: A systematic study , 2002, Intell. Data Anal..

[4]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[5]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[6]  Klaus-Robert Müller,et al.  From outliers to prototypes: Ordering data , 2006, Neurocomputing.

[7]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[8]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[9]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[10]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[11]  Sungzoon Cho,et al.  Application of LVQ to novelty detection using outlier training data , 2006, Pattern Recognit. Lett..

[12]  Yoram Singer,et al.  Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers , 2000, J. Mach. Learn. Res..

[13]  David M. J. Tax,et al.  One-class classification , 2001 .

[14]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[15]  M. M. Moya,et al.  One-class classifier networks for target recognition applications , 1993 .

[16]  Hsuan-Tien Lin,et al.  A note on Platt’s probabilistic outputs for support vector machines , 2007, Machine Learning.

[17]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[18]  Malik Yousef,et al.  One-Class SVMs for Document Classification , 2002, J. Mach. Learn. Res..

[19]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[20]  Vladimir Vapnik,et al.  Estimation of Dependences Based on Empirical Data: Springer Series in Statistics (Springer Series in Statistics) , 1982 .

[21]  Kristin P. Bennett,et al.  Multicategory Classification by Support Vector Machines , 1999, Comput. Optim. Appl..

[22]  Adam Kowalczyk,et al.  Extreme re-balancing for SVMs: a case study , 2004, SKDD.

[23]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[24]  Chih-Jen Lin,et al.  A Comparison of Methods for Multi-class Support Vector Machines , 2015 .

[25]  Alexander J. Smola,et al.  Advances in Large Margin Classifiers , 2000 .

[26]  Robert P. W. Duin,et al.  Using two-class classifiers for multiclass classification , 2002, Object recognition supported by user interaction for service robots.

[27]  Piotr Juszczak Learning to recognise : a study on one-class classification and active learning , 2006 .

[28]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[29]  Nikolaos M. Avouris,et al.  EVALUATION OF CLASSIFIERS FOR AN UNEVEN CLASS DISTRIBUTION PROBLEM , 2006, Appl. Artif. Intell..

[30]  Francesco Camastra,et al.  Machine Learning for Audio, Image and Video Analysis - Theory and Applications , 2007, Advanced Information and Knowledge Processing.

[31]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[32]  Nitesh V. Chawla,et al.  Editorial: special issue on learning from imbalanced data sets , 2004, SKDD.

[33]  Matthieu Cord,et al.  Machine Learning Techniques for Multimedia - Case Studies on Organization and Retrieval , 2008, Machine Learning Techniques for Multimedia.

[34]  Ulrich H.-G. Kreßel,et al.  Pairwise classification and support vector machines , 1999 .

[35]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[36]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[37]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.