Stochastic Quasi-Fejér Block-Coordinate Fixed Point Iterations with Random Sweeping
暂无分享,去创建一个
[1] B. Pettis. On integration in vector spaces , 1938 .
[2] J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .
[3] W. Petryshyn. Construction of fixed points of demicompact mappings in Hilbert space , 1966 .
[4] Yu. M. Ermol’ev. On the method of generalized stochastic gradients and quasi-Féjer sequences , 1969 .
[5] M. Sibony. Méthodes itératives pour les équations et inéquations aux dérivées partielles non linéaires de type monotone , 1970 .
[6] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[7] J. Cea. Optimisation : théorie et algorithmes , 1971 .
[8] A. Auslender. Méthodes numériques pour la décomposition et la minimisation de fonctions non différentiables , 1971 .
[9] Yu. M. Ermol’ev. On convergence of quasi-Féjer sequences , 1971 .
[10] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[11] B. Mercier. Topics in Finite Element Solution of Elliptic Problems , 1979 .
[12] P. Lions,et al. Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .
[13] M. Loève,et al. Probability Theory II (4th ed.). , 1979 .
[14] Felipe Acker,et al. Convergence d'un schéma de minimisation alternée , 1980 .
[15] M. Fortin,et al. Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .
[16] D. Gabay. Applications of the method of multipliers to variational inequalities , 1983 .
[17] H. Robbins,et al. A Convergence Theorem for Non Negative Almost Supermartingales and Some Applications , 1985 .
[18] R. Glowinski,et al. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .
[19] Paul Tseng,et al. Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming , 1990, Math. Program..
[20] P. Tseng. Applications of splitting algorithm to decomposition in convex programming and variational inequalities , 1991 .
[21] M. Talagrand,et al. Probability in Banach Spaces: Isoperimetry and Processes , 1991 .
[22] Nonlinear functional analysis and its applications, part I: Fixed-point theorems , 1991 .
[23] Dimitri P. Bertsekas,et al. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..
[24] R. D. Murphy,et al. Iterative solution of nonlinear equations , 1994 .
[25] Heinz H. Bauschke,et al. On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..
[26] P. L. Combettes,et al. Quasi-Fejérian Analysis of Some Optimization Algorithms , 2001 .
[27] Heinz H. Bauschke,et al. A Weak-to-Strong Convergence Principle for Fejé-Monotone Methods in Hilbert Spaces , 2001, Math. Oper. Res..
[28] P. L. Combettes,et al. Solving monotone inclusions via compositions of nonexpansive averaged operators , 2004 .
[29] Hein Hundal. An alternating projection that does not converge in norm , 2004 .
[30] Heinz H. Bauschke,et al. The asymptotic behavior of the composition of two resolvents , 2005, Nonlinear Analysis: Theory, Methods & Applications.
[31] Patrick L. Combettes,et al. Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..
[32] Markku Kallio,et al. A splitting method for stochastic programs , 2006, Ann. Oper. Res..
[33] Kengy Barty,et al. Hilbert-Valued Perturbed Subgradient Algorithms , 2007, Math. Oper. Res..
[34] I. I. Eremin,et al. Fejér processes in theory and practice: Recent results , 2009 .
[35] P. L. Combettes,et al. Iterative construction of the resolvent of a sum of maximal monotone operators , 2009 .
[36] Patrick L. Combettes,et al. Fejér Monotonicity in Convex Optimization , 2009, Encyclopedia of Optimization.
[37] Luis,et al. Convex Variational Formulation with Smooth Coupling for Multicomponent Signal Decomposition and Recovery , 2009 .
[38] Heinz H. Bauschke,et al. Characterizing arbitrarily slow convergence in the method of alternating projections , 2007, Int. Trans. Oper. Res..
[39] P. L. Combettes,et al. Dualization of Signal Recovery Problems , 2009, 0907.0436.
[40] Patrick L. Combettes,et al. A Parallel Splitting Method for Coupled Monotone Inclusions , 2009, SIAM J. Control. Optim..
[41] Peter Orbanz. Probability Theory II , 2011 .
[42] Heinz H. Bauschke,et al. Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.
[43] Patrick L. Combettes,et al. Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.
[44] P. L. Combettes,et al. There is no variational characterization of the cycles in the method of periodic projections , 2011, 1102.1378.
[45] Ernesto De Vito,et al. A consistent algorithm to solve Lasso, elastic-net and Tikhonov regularization , 2011, J. Complex..
[46] Luis M Briceño-Arias. Problèmes d'inclusions couplées : Éclatement, algorithmes et applications , 2011 .
[47] Heinz H. Bauschke,et al. Firmly Nonexpansive Mappings and Maximally Monotone Operators: Correspondence and Duality , 2011, 1101.4688.
[48] Yurii Nesterov,et al. Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..
[49] P. L. Combettes,et al. Variable metric forward–backward splitting with applications to monotone inclusions in duality , 2012, 1206.6791.
[50] L. Briceño-Arias. Forward-Douglas–Rachford splitting and forward-partial inverse method for solving monotone inclusions , 2012, 1212.5942.
[51] A. Cegielski. Iterative Methods for Fixed Point Problems in Hilbert Spaces , 2012 .
[52] J. Pesquet,et al. A Parallel Inertial Proximal Optimization Method , 2012 .
[53] L. Briceño-Arias. A Douglas–Rachford splitting method for solving equilibrium problems , 2011, 1110.1670.
[54] P. L. Combettes,et al. Monotone Operator Methods for Nash Equilibria in Non-potential Games , 2011, 1106.0144.
[55] Pascal Bianchi,et al. Asynchronous distributed optimization using a randomized alternating direction method of multipliers , 2013, 52nd IEEE Conference on Decision and Control.
[56] Laurent Condat,et al. A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms , 2012, Journal of Optimization Theory and Applications.
[57] Luca Baldassarre,et al. Accelerated and Inexact Forward-Backward Algorithms , 2013, SIAM J. Optim..
[58] Radu Ioan Bot,et al. A Douglas-Rachford Type Primal-Dual Method for Solving Inclusions with Mixtures of Composite and Parallel-Sum Type Monotone Operators , 2012, SIAM J. Optim..
[59] Stephen J. Wright,et al. Optimization for Machine Learning , 2013 .
[60] Bang Công Vu,et al. A splitting algorithm for dual monotone inclusions involving cocoercive operators , 2011, Advances in Computational Mathematics.
[61] Patrick L. Combettes,et al. Systems of Structured Monotone Inclusions: Duality, Algorithms, and Applications , 2012, SIAM J. Optim..
[62] Mohamed-Jalal Fadili,et al. A Generalized Forward-Backward Splitting , 2011, SIAM J. Imaging Sci..
[63] C. Byrne. Iterative Optimization in Inverse Problems , 2014 .
[64] Patrick L. Combettes,et al. A primal-dual method of partial inverses for composite inclusions , 2013, Optim. Lett..
[65] Ion Necoara,et al. A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints , 2013, Comput. Optim. Appl..
[66] Peter Richtárik,et al. Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function , 2011, Mathematical Programming.
[67] Gabriel Peyré,et al. Optimal Transport with Proximal Splitting , 2013, SIAM J. Imaging Sci..
[68] Bastian Goldlücke,et al. Variational Analysis , 2014, Computer Vision, A Reference Guide.
[69] L. Rosasco,et al. A Stochastic forward-backward splitting method for solving monotone inclusions in Hilbert spaces , 2014, 1403.7999.
[70] Marc Teboulle,et al. Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2013, Mathematical Programming.
[71] Lin Xiao,et al. On the complexity analysis of randomized block-coordinate descent methods , 2013, Mathematical Programming.
[72] Heinz H. Bauschke,et al. Optimal Rates of Linear Convergence of Relaxed Alternating Projections and Generalized Douglas-Rachford Methods for Two Subspaces , 2015, Numerical Algorithms.
[73] Radu Ioan Bot,et al. On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems , 2013, Mathematical Programming.
[74] R. Boţ,et al. Convergence rates for forward-backward dynamical systems associated with strongly monotone inclusions , 2015, 1504.01863.
[75] P. L. Combettes,et al. Stochastic Approximations and Perturbations in Forward-Backward Splitting for Monotone Operators , 2015, 1507.07095.
[76] Heinz H. Bauschke,et al. Proximal point algorithm, Douglas-Rachford algorithm and alternating projections: a case study , 2015, 1501.06603.
[77] Peter Richtárik,et al. On optimal probabilities in stochastic coordinate descent methods , 2013, Optim. Lett..
[78] Émilie Chouzenoux,et al. A block coordinate variable metric forward–backward algorithm , 2016, Journal of Global Optimization.
[79] Gersende Fort,et al. On Perturbed Proximal Gradient Algorithms , 2014, J. Mach. Learn. Res..