Application of phenology-based algorithm and linear regression model for estimating rice cultivated areas and yield using remote sensing data in Bansloi River Basin, Eastern India

[1]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[2]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[3]  C. Willmott Some Comments on the Evaluation of Model Performance , 1982 .

[4]  Thuy Le Toan,et al.  Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results , 1997, IEEE Trans. Geosci. Remote. Sens..

[5]  David P. Miller,et al.  Status of atmospheric correction using a MODTRAN4-based algorithm , 2000, SPIE Defense + Commercial Sensing.

[6]  G. Asner,et al.  Cloud cover in Landsat observations of the Brazilian Amazon , 2001 .

[7]  K. Tsuchiya,et al.  Comparison of SAR and optical sensor data for monitoring of rice plant around Hiroshima , 2001 .

[8]  Wang Ren-chao,et al.  Rice yield estimation using remote sensing and simulation model , 2002 .

[9]  黄敬峰,et al.  Rice yield estimation using remote sensing and simulation model , 2002 .

[10]  Changsheng Li,et al.  Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data , 2002 .

[11]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[12]  W. Bastiaanssen,et al.  A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan , 2003 .

[13]  K. Cassman,et al.  Rice yields decline with higher night temperature from global warming. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  E. Davidson,et al.  Satellite-based modeling of gross primary production in an evergreen needleleaf forest , 2004 .

[15]  Changsheng Li,et al.  Mapping paddy rice agriculture in southern China using multi-temporal MODIS images , 2005 .

[16]  E. Carfagna,et al.  Using Remote Sensing for Agricultural Statistics , 2005 .

[17]  G. Khush What it will take to Feed 5.0 Billion Rice consumers in 2030 , 2005, Plant Molecular Biology.

[18]  Yuan Shen,et al.  Predicting Rice Yield Using Canopy Reflectance Measured at Booting Stage , 2005 .

[19]  Changsheng Li,et al.  Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images , 2006 .

[20]  R. P. Singh,et al.  Use of vegetation index and meteorological parameters for the prediction of crop yield in India , 2007 .

[21]  Thuy Le Toan,et al.  Rice Mapping and Monitoring Using ENVISAT ASAR Data , 2008, IEEE Geoscience and Remote Sensing Letters.

[22]  Xiaofeng Li,et al.  Identifying wetland change in China’s Sanjiang Plain using remote sensing , 2009, Wetlands.

[23]  F. Achard,et al.  Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s , 2010, Proceedings of the National Academy of Sciences.

[24]  Xueliang L. Cai,et al.  Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic river basin. , 2010 .

[25]  Shusen Wang,et al.  Crop yield forecasting on the Canadian Prairies using MODIS NDVI data , 2011 .

[26]  F. Nishio,et al.  Spectral Characteristics and Mapping of Rice Plants Using Multi-Temporal Landsat Data , 2011 .

[27]  W. Salas,et al.  Integrating SAR and optical imagery for regional mapping of paddy rice attributes in the Poyang Lake Watershed, China , 2011 .

[28]  David P. Roy,et al.  Continuity of Landsat observations: Short term considerations , 2011 .

[29]  Dailiang Peng,et al.  Detection and estimation of mixed paddy rice cropping patterns with MODIS data , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[30]  F. Nishio,et al.  Rice Yield Estimation Using Landsat ETM+ Data and Field Observation , 2011 .

[31]  Prasad S. Thenkabail,et al.  Mapping rice areas of South Asia using MODIS multitemporal data , 2011 .

[32]  F. Kogan,et al.  Use of Remote Sensing Data for Estimation of Aman Rice Yield , 2012 .

[33]  Douglas K. Bolton,et al.  Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics , 2013 .

[34]  Jingfeng Huang,et al.  Multi-year monitoring of paddy rice planting area in Northeast China using MODIS time series data , 2013, Journal of Zhejiang University SCIENCE B.

[35]  A. Singh,et al.  Validation of CropSyst simulation model for direct seeded rice – wheat cropping system , 2013 .

[36]  Bangqian Chen,et al.  Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery , 2013 .

[37]  M. Boschetti,et al.  Comparative Analysis of Normalised Difference Spectral Indices Derived from MODIS for Detecting Surface Water in Flooded Rice Cropping Systems , 2014, PloS one.

[38]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[39]  Luca Gatti,et al.  Towards an Operational SAR-Based Rice Monitoring System in Asia: Examples from 13 Demonstration Sites across Asia in the RIICE Project , 2014, Remote. Sens..

[40]  C. Jeganathan,et al.  Extracting seasonal cropping patterns using multi-temporal vegetation indices from IRS LISS-III data in Muzaffarpur District of Bihar, India , 2014 .

[41]  Ahmad Khan,et al.  Wheat Yield Forecasting for Punjab Province from Vegetation Index Time Series and Historic Crop Statistics , 2014, Remote. Sens..

[42]  Christopher E. Holden,et al.  Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time , 2015 .

[43]  A. Schneider,et al.  Mapping rice paddy extent and intensification in the Vietnamese Mekong River Delta with dense time stacks of Landsat data , 2015 .

[44]  Inbal Becker-Reshef,et al.  Rice yield estimation using Landsat ETM+ Data , 2015 .

[45]  Jinwei Dong,et al.  Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery. , 2015, ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing.

[46]  Joanne C. White,et al.  An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites , 2015 .

[47]  Ioannis Z. Gitas,et al.  Development of a rule-based algorithm for rice cultivation mapping using Landsat 8 time series , 2015, International Conference on Remote Sensing and Geoinformation of Environment.

[48]  Jinwei Dong,et al.  Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. , 2015, ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing.

[49]  Quazi K. Hassan,et al.  Application of Remote Sensors in Mapping Rice Area and Forecasting Its Production: A Review , 2015, Sensors.

[50]  Jiyuan Liu,et al.  Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms , 2015 .

[51]  Jinwei Dong,et al.  Mapping paddy rice planting area in wheat-rice double-cropped areas through integration of Landsat-8 OLI, MODIS, and PALSAR images , 2015, Scientific Reports.

[52]  Jason Yang,et al.  Land Features Extraction from Landsat TM Image Using Decision Tree Method , 2016 .

[53]  Jie Wang,et al.  Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[54]  Jinwei Dong,et al.  Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. , 2016, Remote sensing of environment.

[55]  Jinwei Dong,et al.  Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015. , 2017, The Science of the total environment.

[56]  K. Ajith,et al.  Rice Acreage Estimation in Thanjavur, Tamil Nadu Using Lands at 8 OLIIMAGES and GIS Techniques , 2017 .

[57]  J. Shang,et al.  Crop classification and acreage estimation in North Korea using phenology features , 2017 .

[58]  Lamin R. Mansaray,et al.  Optimising rice mapping in cloud-prone environments by combining quad-source optical with Sentinel-1A microwave satellite imagery , 2019, GIScience & Remote Sensing.

[59]  G. T. Uddin,et al.  Identifying Climatic Variables with Rice Yield Relationship and Land Cover Change Detection at Sylhet Region , 2019, Asian Journal of Geographical Research.

[60]  Jinwei Dong,et al.  High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data , 2019, Scientific Data.

[61]  Cesar I. Alvarez-Mendoza,et al.  Improving NDVI by removing cirrus clouds with optical remote sensing data from Landsat-8 – A case study in Quito, Ecuador , 2019, Remote Sensing Applications: Society and Environment.

[62]  Han Yang,et al.  Assessment of Wheat Straw Cover and Yield Performance in a Rice-Wheat Cropping System by Using Landsat Satellite Data , 2019, Sustainability.