Fractional Schrödinger equation and time dependent potentials

[1]  R. El-Nabulsi,et al.  A family of nonlinear Schrodinger equations and their solitons solutions , 2023, Chaos, Solitons & Fractals.

[2]  M. Razzaghi,et al.  A numerical method based on the piecewise Jacobi functions for distributed-order fractional Schrödinger equation , 2022, Communications in Nonlinear Science and Numerical Simulation.

[3]  A. Akgül,et al.  A novel approach for solving linear and nonlinear time-fractional Schrödinger equations , 2022, Chaos, Solitons & Fractals.

[4]  F. M. Andrade,et al.  Unitary evolution for a two-level quantum system in fractional-time scenario. , 2022, Physical review. E.

[5]  R. S. Zola,et al.  Frequency-Dependent Dielectric Permittivity in Poisson-Nernst-Planck Model. , 2022, The journal of physical chemistry. B.

[6]  E. K. Lenzi,et al.  Schrödinger Equation with Geometric Constraints and Position-Dependent Mass: Linked Fractional Calculus Models , 2022, Quantum Reports.

[7]  E. K. Lenzi,et al.  Anomalous Diffusion and Surface Effects on the Electric Response of Electrolytic Cells , 2022, Physchem.

[8]  Xiangyang Yu,et al.  Time fractional Schrödinger equation with a limit based fractional derivative , 2022, Chaos, Solitons & Fractals.

[9]  Newton I. Okposo,et al.  Solutions for time-fractional coupled nonlinear Schrödinger equations arising in optical solitons , 2021, Chinese Journal of Physics.

[10]  L. A. Quezada-Téllez,et al.  A fractional-order approach to cardiac rhythm analysis , 2021 .

[11]  Ervin K. Lenzi,et al.  Anomalous diffusion and electrical impedance response: Fractional operators with singular and non-singular kernels , 2021, Commun. Nonlinear Sci. Numer. Simul..

[12]  Ji-Huan He,et al.  THE FRACTIONAL COMPLEX TRANSFORM: A NOVEL APPROACH TO THE TIME-FRACTIONAL SCHRÖDINGER EQUATION , 2020 .

[13]  A. Novatski,et al.  Fractional GCEs behaviors merged: Prediction to the photoacoustic signal obtained with subdiffusive and superdiffusive operators , 2020 .

[14]  Ahmed Alsaedi,et al.  Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays , 2020, Commun. Nonlinear Sci. Numer. Simul..

[15]  M.H. Heydari,et al.  A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana–Baleanu–Caputo derivative , 2019, Chaos, Solitons & Fractals.

[16]  Ervin K. Lenzi,et al.  Constrained quantum motion in δ-potential and application of a generalized integral operator , 2019, Comput. Math. Appl..

[17]  C. Zheng,et al.  Spatial fractional Darcy’s law to quantify fluid flow in natural reservoirs , 2019, Physica A: Statistical Mechanics and its Applications.

[18]  Trifce Sandev,et al.  The time-dependent Schrödinger equation in three dimensions under geometric constraints , 2019, Journal of Mathematical Physics.

[19]  J. F. Gómez‐Aguilar,et al.  Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws , 2018, Chaos, Solitons & Fractals.

[20]  H. M. Baskonus,et al.  Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation , 2018, Optik.

[21]  C. Zheng,et al.  A time fractional convection–diffusion equation to model gas transport through heterogeneous soil and gas reservoirs , 2018, Physica A: Statistical Mechanics and its Applications.

[22]  S. Holm,et al.  A Survey on Fractional Derivative Modeling of Power-Law Frequency-Dependent Viscous Dissipative and Scattering Attenuation in Acoustic Wave Propagation , 2018 .

[23]  E. K. Lenzi,et al.  Fractional Diffusion Equations and Anomalous Diffusion , 2018 .

[24]  Trifce Sandev,et al.  Generalized time-dependent Schrödinger equation in two dimensions under constraints , 2018 .

[25]  Xiang-yang Yu,et al.  Time fractional evolution of the two-level system interacting with light field , 2017 .

[26]  Yuting Jiang,et al.  Transient electroosmotic slip flow of fractional Oldroyd-B fluids , 2017 .

[27]  S. Holm,et al.  Connecting the grain-shearing mechanism of wave propagation in marine sediments to fractional order wave equations. , 2016, The Journal of the Acoustical Society of America.

[28]  Selccuk cS. Bayin Definition of the Riesz derivative and its application to space fractional quantum mechanics , 2016, 1612.03046.

[29]  Wen Chen,et al.  A causal fractional derivative model for acoustic wave propagation in lossy media , 2016 .

[30]  S. Holm,et al.  A fractional calculus approach to the propagation of waves in an unconsolidated granular medium , 2015 .

[31]  Xueke Pu,et al.  Fractional Partial Differential Equations and their Numerical Solutions , 2015 .

[32]  Trifce Sandev,et al.  Time-dependent Schrodinger-like equation with nonlocal term , 2014 .

[33]  Jian-Jun Dong Fractional Green’s Function for the Time-Dependent Scattering Problem in the Space-Time-Fractional Quantum Mechanics , 2014 .

[34]  B. Achar,et al.  Time Fractional Schrodinger Equation Revisited , 2013 .

[35]  E. K. Lenzi,et al.  Fractional Diffusion Equation and the Electrical Impedance: Experimental Evidence in Liquid-Crystalline Cells , 2012 .

[36]  Ralf Metzler,et al.  Fractional Calculus: An Introduction for Physicists , 2012 .

[37]  Alexander Iomin,et al.  Fractional-time Schrödinger equation: Fractional dynamics on a comb , 2011, 1108.6178.

[38]  S. Bayin,et al.  Time fractional Schrödinger equation: Fox's H-functions and the effective potential , 2011, 1103.3295.

[39]  Edmundo Capelas de Oliveira,et al.  Tunneling in fractional quantum mechanics , 2010, 1011.1948.

[40]  E. C. Oliveira,et al.  On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator , 2009 .

[41]  K. S. Fa Anomalous diffusion in a generalized Langevin equation , 2009 .

[42]  E. Capelas de Oliveira,et al.  Solution of the fractional Langevin equation and the Mittag–Leffler functions , 2009 .

[43]  M. Despósito,et al.  Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  N. Laskin,et al.  Fractional quantum mechanics , 2008, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  G. Slepyan,et al.  Matter coupling to strong electromagnetic fields in two-level quantum systems with broken inversion symmetry. , 2008, Physical review letters.

[46]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[47]  M. Despósito,et al.  Memory effects in the asymptotic diffusive behavior of a classical oscillator described by a generalized Langevin equation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  L. R. Evangelista,et al.  Solutions for a Schrödinger equation with a nonlocal term , 2008 .

[49]  M. Despósito,et al.  Anomalous diffusion induced by a Mittag-Leffler correlated noise. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Mingyu Xu,et al.  Generalized fractional Schrödinger equation with space-time fractional derivatives , 2007 .

[51]  Xiaoyi Guo,et al.  Some physical applications of fractional Schrödinger equation , 2006 .

[52]  A. M. Mathai,et al.  Fractional Reaction-Diffusion Equations , 2006, math/0604473.

[53]  R. M. Angelo,et al.  Two-level quantum dynamics, integrability, and unitary NOT gates (4 pages) , 2005, quant-ph/0509148.

[54]  Fawang Liu,et al.  Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends , 2005 .

[55]  J. Bisquert Interpretation of a fractional diffusion equation with nonconserved probability density in terms of experimental systems with trapping or recombination. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  I. Turner,et al.  Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation , 2005 .

[57]  Yury F. Luchko,et al.  Algorithms for the fractional calculus: A selection of numerical methods , 2005 .

[58]  M. Naber Time fractional Schrödinger equation , 2004, math-ph/0410028.

[59]  N. Laskin Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  Nick Laskin,et al.  Fractals and quantum mechanics. , 2000, Chaos.

[61]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[62]  A. Kilbas,et al.  On the H-function , 1998, math/9803163.

[63]  Ruyten Magnetic and optical resonance of two-level quantum systems in modulated fields. I. Bloch equation approach. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[64]  R. Bagley,et al.  A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity , 1983 .

[65]  J. Westwater,et al.  The Mathematics of Diffusion. , 1957 .

[66]  I. Rabi Space Quantization in a Gyrating Magnetic Field , 1937 .

[67]  L. R. Evangelista,et al.  An Introduction to Anomalous Diffusion and Relaxation , 2023, PoliTO Springer Series.

[68]  E. Sjöqvist,et al.  High-order finite difference method for the Schrödinger equation on deforming domains , 2021, J. Comput. Phys..

[69]  Mehdi Dalir,et al.  Applications of Fractional Calculus , 2010 .

[70]  Moore,et al.  Quantum projection noise: Population fluctuations in two-level systems. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[71]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .