Optimal Control of Cell Mass and Maturity in a Model of Follicular Ovulation

In this paper, we study optimal control problems associated with a scalar hyperbolic conservation law modeling the development of ovarian follicles. Changes in the age and maturity of follicular cells are described by a two-dimensional conservation law, where the control terms act on the velocities. The control problem consists in optimizing the follicular cell resources so that the follicular maturity reaches a maximal value in fixed time. Formulating the optimal control problem within a hybrid framework, we prove necessary optimality conditions in the form of the hybrid maximum principle. Then we derive the optimal strategy and show that there exists at least one optimal bang-bang control with one single switching time.

[1]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[2]  F. Ancona,et al.  On the Attainable Set for Scalar Nonlinear Conservation Laws with Boundary Control , 1998 .

[3]  Frédérique Clément,et al.  Multi-scale modeling of the follicle selection process in the ovary. , 2005, Mathematical biosciences.

[4]  Ta-Tsien Li,et al.  Exact Boundary Controllability for Quasi-Linear Hyperbolic Systems , 2002, SIAM J. Control. Optim..

[5]  A. Smirnov Necessary optimality conditions for a class of optimal control problems with discontinuous integrand , 2008 .

[6]  A. V. Dmitruk,et al.  The Hybrid Maximum Principle is a consequence of Pontryagin Maximum Principle , 2008, Syst. Control. Lett..

[7]  Bopeng Rao,et al.  Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions , 2009, 0908.1302.

[8]  Richard Bellman,et al.  Introduction to the mathematical theory of control processes , 1967 .

[9]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[10]  Peipei Shang Cauchy problem for multiscale conservation laws: Application to structured cell populations , 2010 .

[11]  T. Horsin,et al.  On the controllability of the burger equation , 1998 .

[12]  Günter Leugering,et al.  Global boundary controllability of the Saint-Venant system for sloped canals with friction , 2009 .

[13]  Frédérique Clément,et al.  Multiscale Modeling of Follicular Ovulation as a Reachability Problem , 2006, Multiscale Model. Simul..

[14]  Zhiqiang Wang,et al.  Analysis and control of a scalar conservation law modeling a highly re-entrant manufacturing system , 2010, 1003.4411.

[15]  M. Herty,et al.  Optimal Control for Traffic Flow Networks , 2005 .

[16]  Emmanuel Trélat,et al.  Convergence Results for Smooth Regularizations of Hybrid Nonlinear Optimal Control Problems , 2011, SIAM J. Control. Optim..

[17]  Martin Gugat,et al.  Optimal switching boundary control of a string to rest in finite time , 2008 .

[18]  F. Clément,et al.  Optimal control of the cell dynamics in the granulosa of ovulatory follicles. , 1998, Mathematical biosciences.

[19]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[20]  A. Hsueh,et al.  Initial and cyclic recruitment of ovarian follicles. , 2000, Endocrine reviews.

[21]  J. Coron Control and Nonlinearity , 2007 .

[22]  H. Sussmann,et al.  A maximum principle for hybrid optimal control problems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[23]  Giuseppe Maria Coclite,et al.  On the Boundary Control of Systems of Conservation Laws , 2002, SIAM J. Control. Optim..

[24]  Jean-Michel Coron,et al.  Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations , 2002 .

[25]  H. Sussmann A nonsmooth hybrid maximum principle , 1999 .

[26]  Benedetto Piccoli,et al.  Hybrid systems and optimal control , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[27]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[28]  H. Hermes,et al.  Foundations of optimal control theory , 1968 .

[29]  Martin Gugat Boundary Controllability between Sub- and Supercritical Flow , 2003, SIAM J. Control. Optim..

[30]  Michael Herty,et al.  Flow control in gas networks: Exact controllability to a given demand , 2011 .

[31]  Philippe Michel,et al.  Multiscale Modeling of Follicular Ovulation as a Mass and Maturity Dynamical System , 2011, Multiscale Model. Simul..

[32]  M. Kawski,et al.  Analysis of a conservation law modeling a highly re-entrant manufacturing system , 2009, 0907.1274.

[33]  Jean-Michel Coron,et al.  Controllability for a scalar conservation law with nonlocal velocity , 2012 .

[34]  E. Blum,et al.  The Mathematical Theory of Optimal Processes. , 1963 .

[35]  Olivier Glass,et al.  On the controllability of the 1-D isentropic Euler equation , 2007 .

[36]  Mauro Garavello,et al.  Hybrid Necessary Principle , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[37]  Jean-Michel Coron,et al.  Exact Boundary Controllability for 1-D Quasilinear Hyperbolic Systems with a Vanishing Characteristic Speed , 2009, SIAM J. Control. Optim..

[38]  Zhiqiang Wang,et al.  Exact Controllability for Nonautonomous First Order Quasilinear Hyperbolic Systems* , 2006 .

[39]  John L. Casti Introduction to the Mathematical Theory of Control Processes, Volume I: Linear Equations and Quadratic Criteria, Volume II: Nonlinear Processes , 1978, IEEE Transactions on Systems, Man, and Cybernetics.