A graph matching approach for labeling brain sulci using location, orientation, and shape

The human brain cortex is a highly convoluted sheet of gray matter composed of folds (gyri) and fissures (sulci). Sulci serve as important macroscopic landmarks to distinguish different functional areas of the brain. The exact segmentation and identification of sulci is critical for human brain mapping studies that aim at finding correspondences between structures and their function. In this paper, a sulcus identification algorithm is introduced using shape, orientation, location, and neighborhood information. Experimental results demonstrate that the method is efficient and accurate.

[1]  Frithjof Kruggel,et al.  MRI-based volumetry of head compartments: Normative values of healthy adults , 2006, NeuroImage.

[2]  Frithjof Kruggel,et al.  Automatic segmentation of human brain sulci , 2008, Medical Image Anal..

[3]  Frithjof Kruggel,et al.  Robust parametrization of brain surface meshes , 2008, Medical Image Anal..

[4]  Jerry L. Prince,et al.  Using a statistical shape model to extract sulcal curves on the outer cortex of the human brain , 2002, IEEE Transactions on Medical Imaging.

[5]  Richard M. Leahy,et al.  Automated graph-based analysis and correction of cortical volume topology , 2001, IEEE Transactions on Medical Imaging.

[6]  Hon-Son Don,et al.  3-D Moment Forms: Their Construction and Application to Object Identification and Positioning , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  D. Louis Collins,et al.  Automatic Identification of Cortical Sulci Using a 3D Probabilistic Atlas , 1998, MICCAI.

[8]  Paul M. Thompson,et al.  Automated Extraction of the Cortical Sulci Based on a Supervised Learning Approach , 2007, IEEE Transactions on Medical Imaging.

[9]  Jean-Francois Mangin,et al.  Automatic Inference of Sulcus Patterns Using 3D Moment Invariants , 2007, MICCAI.

[10]  Jerry L. Prince,et al.  Mapping Techniques for Aligning Sulci across Multiple Brains , 2003, MICCAI.

[11]  Bernd Hamann,et al.  Brain Mapping Using Topology Graphs Obtained by Surface Segmentation , 2006 .

[12]  Gabriele Lohmann,et al.  Automatic Detection of Sulcal Bottom Lines in MR Images of the Human Brain , 1997, IPMI.

[13]  Ron Kikinis,et al.  On the Laplace-Beltrami operator and brain surface flattening , 1999, IEEE Transactions on Medical Imaging.

[14]  Allen Van Gelder,et al.  Computer Algorithms: Introduction to Design and Analysis , 1978 .

[15]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[16]  Dinggang Shen,et al.  HAMMER: hierarchical attribute matching mechanism for elastic registration , 2002, IEEE Transactions on Medical Imaging.

[17]  Gabriele Lohmann,et al.  Extracting line representations of sulcal and gyral patterns in MR images of the human brain , 1998, IEEE Transactions on Medical Imaging.

[18]  Michel Desvignes,et al.  Feature Extraction for Cortical Sulci Identification , 1995 .

[19]  Michael Unser,et al.  Image interpolation and resampling , 2000 .

[20]  Pierre Machart Morphological Segmentation , 2009 .

[21]  Dinggang Shen,et al.  Automatic classification of sulcal regions of the human brain cortex using pattern recognition , 2003, SPIE Medical Imaging.

[22]  William J. Christmas,et al.  Structural Matching in Computer Vision Using Probabilistic Relaxation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Alfred M. Bruckstein,et al.  Pruning Medial Axes , 1998, Comput. Vis. Image Underst..

[24]  D. Louis Collins,et al.  Brain morphometry using 3D moment invariants , 2004, Medical Image Anal..

[25]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[26]  Jerry L Prince,et al.  Automated Sulcal Segmentation Using Watersheds on the Cortical Surface , 2002, NeuroImage.

[27]  Frithjof Kruggel,et al.  Alignment of magnetic-resonance brain datasets with the stereotactical coordinate system , 1999, Medical Image Anal..

[28]  Guillermo Sapiro,et al.  A geometric method for automatic extraction of sulcal fundi , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[29]  Isabelle Bloch,et al.  From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations , 1995, Journal of Mathematical Imaging and Vision.

[30]  G. Bruyn Atlas of the Cerebral Sulci, M. Ono, S. Kubik, Chad D. Abernathey (Eds.). Georg Thieme Verlag, Stuttgart, New York (1990), 232, DM 298 , 1990 .

[31]  Gabriele Lohmann,et al.  Automatic labelling of the human cortical surface using sulcal basins , 2000, Medical Image Anal..

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  Jean-Francois Mangin,et al.  Automatic recognition of cortical sulci of the human brain using a congregation of neural networks , 2002, Medical Image Anal..

[34]  Paolo Cignoni,et al.  Reconstruction of topologically correct and adaptive trilinear isosurfaces , 2000, Comput. Graph..

[35]  Paul M. Thompson,et al.  Joint Sulci Detection Using Graphical Models and Boosted Priors , 2007, IPMI.

[36]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[37]  Albert Macovski,et al.  Medical imaging systems , 1983 .

[38]  Jerry L. Prince,et al.  Adaptive fuzzy segmentation of magnetic resonance images , 1999, IEEE Transactions on Medical Imaging.

[39]  Paul M. Thompson,et al.  Extracting and Representing the Cortical Sulci , 1999, IEEE Computer Graphics and Applications.

[40]  Xiao Han,et al.  CRUISE: Cortical reconstruction using implicit surface evolution , 2004, NeuroImage.

[41]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[42]  D. Louis Collins,et al.  Automated extraction and variability analysis of sulcal neuroanatomy , 1999, IEEE Transactions on Medical Imaging.

[43]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[44]  J. Régis Anatomie sulcale profonde et cartographie fonctionnelle du cortex cerebral , 1994 .