Irreproducibility in hydrogen storage material research

The storage of hydrogen in materials has received a significant amount of attention in recent years because this approach is widely thought to be one of the most promising solutions to the problem of storing hydrogen for use as an alternative energy carrier in a safe, compact and affordable form. However, there have been a number of high profile cases in which erroneous or irreproducible data have been published. Meanwhile, the irreproducibility of research results in a wide range of disciplines has been the subject of an increasing amount of attention due to problems with some of the data in the literature. In this Perspective, we provide a summary of the problems that have affected hydrogen storage material research. We also discuss the reasons behind them and possible ways of reducing the likelihood of further problems occurring in the future.

[1]  F. Castro,et al.  A novel thermal desorption spectroscopy apparatus , 2000 .

[2]  Robert C. Bowman,et al.  Hydrogen desorption and adsorption measurements on graphite nanofibers , 1998 .

[3]  Miroslav Haluska,et al.  Thermal desorption spectroscopy as a quantitative tool to determine the hydrogen content in solids , 2003 .

[4]  Torben R. Jensen,et al.  Complex and liquid hydrides for energy storage , 2016, Applied Physics A.

[5]  D. Fanelli Do Pressures to Publish Increase Scientists' Bias? An Empirical Support from US States Data , 2010, PloS one.

[6]  Dmitri Golberg,et al.  Effective synthesis of surface-modified boron nitride nanotubes and related nanostructures and their hydrogen uptake , 2008 .

[7]  J. Bentley,et al.  Hydrogen storage by carbon sorption , 1997 .

[8]  Brian A. Nosek,et al.  Scientific Utopia , 2012, Perspectives on psychological science : a journal of the Association for Psychological Science.

[9]  Dmitri Golberg,et al.  Boron Nitride Nanotubes , 2007 .

[10]  T. Nejat Veziroglu,et al.  Storage of hydrogen in nanostructured carbon materials , 2009 .

[11]  Thomas Klassen,et al.  Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction. , 2006, The journal of physical chemistry. B.

[12]  Gustaaf Van Tendeloo,et al.  Metal@COFs: covalent organic frameworks as templates for Pd nanoparticles and hydrogen storage properties of Pd@COF-102 hybrid material. , 2012, Chemistry.

[13]  Satoshi Fukada,et al.  WITHDRAWN: Profiles of hydrogen molar fraction and temperature in ZrV1.9Fe0.1 alloy bed for hydrogen absorption , 2004 .

[14]  Anthony L. Spek,et al.  Structure validation in chemical crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[15]  Paul A. Anderson,et al.  Hydrogen adsorption in zeolites a, x, y and rho , 2003 .

[16]  Andreas Züttel,et al.  Materials for hydrogen storage , 2003 .

[17]  John L. Falconer,et al.  Spillover in Heterogeneous Catalysis , 1995 .

[18]  Barry Gower,et al.  Scientific Method: A Historical and Philosophical Introduction , 1996 .

[19]  Katsuhiko Hirose,et al.  Handbook of hydrogen storage : new materials for future energy storage , 2010 .

[20]  Camelia Matei Ghimbeu,et al.  Understanding the mechanism of hydrogen uptake at low pressure in carbon/palladium nanostructured composites , 2011 .

[21]  Gordon B. Schmidt,et al.  Solving the Replication Problem in Psychology Requires Much More Than a Website , 2013, Industrial and Organizational Psychology.

[22]  K. Thomas,et al.  Hydrogen adsorption and storage on porous materials , 2007 .

[23]  R. T. Yang,et al.  Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. , 2006, Journal of the American Chemical Society.

[24]  R. T. Yang,et al.  Hydrogen storage by alkali-doped carbon nanotubes–revisited , 2000 .

[25]  P. Parilla,et al.  A dynamic calibration technique for temperature programmed desorption spectroscopy. , 2013, The Review of scientific instruments.

[26]  Jonathan V Sweedler,et al.  Striving for Reproducible Science. , 2015, Analytical chemistry.

[27]  Peter McKeon,et al.  A Simple Technique for the Measurement of H 2 Sorption Capacities , 2007 .

[28]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[29]  M. Gad-el-Hak Publish or Perish—An Ailing Enterprise? , 2004 .

[30]  Chaiwat Engtrakul,et al.  Spectroscopic Identification of Hydrogen Spillover Species in Ruthenium-Modified High Surface Area Carbons by Diffuse Reflectance Infrared Fourier Transform Spectroscopy , 2012 .

[31]  Viera Skakalova,et al.  Chemical processes during solid state reaction of carbon with alkali salts prepared for gravimetric hydrogen storage measurements , 2002 .

[32]  D. Cao,et al.  Porous covalent–organic materials: synthesis, clean energy application and design , 2013 .

[33]  Michael Hirscher,et al.  Nanosponges for hydrogen storage , 2012 .

[34]  Gary G. Tibbetts,et al.  Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers , 2001 .

[35]  John Bohannon,et al.  Psychology. Replication effort provokes praise--and 'bullying' charges. , 2014, Science.

[36]  T. Nejat Veziroğlu,et al.  Hydrogen energy progress XIII : proceedings of the 13th World Hydrogen Energy Conference, Beijing, China, June 12-15, 2000 , 2000 .

[37]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[38]  S. Suda,et al.  Consistent determination of the intrinsic kinetic properties between hydrogen and hydriding alloys , 1995 .

[39]  David Book,et al.  Characterisation of porous hydrogen storage materials: carbons, zeolites, MOFs and PIMs. , 2011, Faraday discussions.

[40]  Dmitri Bessarabov,et al.  Hydrogen storage in metal-organic frameworks: A review , 2014 .

[41]  Erich Bauer,et al.  Hydrogen storage capacity of catalytically grown carbon nanofibers. , 2005, The journal of physical chemistry. B.

[42]  R. T. Yang,et al.  New sorbents for hydrogen storage by hydrogen spillover – a review , 2008 .

[43]  R. T. Yang,et al.  Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. , 2006, Journal of the American Chemical Society.

[44]  Dmitri Golberg,et al.  Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. , 2002, Journal of the American Chemical Society.

[45]  Omar M Yaghi,et al.  Hydrogen sorption in functionalized metal-organic frameworks. , 2004, Journal of the American Chemical Society.

[46]  Sabrina Sartori,et al.  A Round Robin Test exercise on hydrogen absorption/desorption properties of a magnesium hydride based material , 2013 .

[47]  E. MacA. Gray,et al.  Analysis of uncertainties in gas uptake measurements using the gravimetric method , 2014 .

[48]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[49]  E. MacA. Gray,et al.  Analysis of the uncertainties in gas uptake measurements using the Sieverts method , 2014 .

[50]  T. Blach,et al.  Sieverts apparatus and methodology for accurate determination of hydrogen uptake by light-atom hosts , 2007 .

[51]  Sven Kepes,et al.  How Trustworthy Is the Scientific Literature in Industrial and Organizational Psychology? , 2013, Industrial and Organizational Psychology.

[52]  Anthony J. Lachawiec,et al.  Nanostructured adsorbents for hydrogen storage at ambient temperature: high-pressure measurements and factors influencing hydrogen spillover , 2013 .

[53]  Rex Harris,et al.  Hydrogen storage materials: the characterisation of their storage properties , 2012 .

[54]  Wenchuan Wang,et al.  Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks , 2010 .

[55]  Yury Gogotsi,et al.  Carbide‐Derived Carbons – From Porous Networks to Nanotubes and Graphene , 2011 .

[56]  Alan Cooper,et al.  High pressure sorption isotherms via differential pressure measurements , 2007 .

[57]  B. Bogdanovic,et al.  Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials , 1997 .

[58]  Giuseppe Zerbi,et al.  Volumetric measurement of hydrogen storage in HCl-treated polyaniline and polypyrrole , 2005 .

[59]  Andreas Züttel,et al.  Hydrogen adsorption on a single-walled carbon nanotube material: a comparative study of three different adsorption techniques , 2004 .

[60]  Satoshi Fukada,et al.  Erratum to “Profiles of hydrogen molar fraction and temperature in ZrV1.9Fe0.1 alloy bed for hydrogen absorption” [J. Alloys Comp (381) 258–265] , 2010 .

[61]  Andrew I. Cooper,et al.  Nanoporous organic polymer networks , 2012 .

[62]  D. Yogi Goswami,et al.  Volumetric hydrogen sorption measurements – Uncertainty error analysis and the importance of thermal equilibration time , 2013 .

[63]  Chen,et al.  High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures , 1999, Science.

[64]  Sven Ove Hansson,et al.  The Role of Technology in Science: Philosophical Perspectives , 2015 .

[65]  Craig M. Brown,et al.  Detection of Hydrogen Spillover in Palladium-Modified Activated Carbon Fibers During Hydrogen Adsorption , 2009 .

[66]  G. Sandrock A panoramic overview of hydrogen storage alloys from a gas reaction point of view , 1999 .

[67]  Jonathan F. Russell,et al.  If a job is worth doing, it is worth doing twice , 2013, Nature.

[68]  Irene Kuhn,et al.  Sorting out the FACS: a devil in the details. , 2014, Cell reports.

[69]  R. Neve,et al.  Reproducibility: changing the policies and culture of cell line authentication , 2015, Nature Methods.

[70]  Michael C. Frank,et al.  Estimating the reproducibility of psychological science , 2015, Science.

[71]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[72]  P. Downes,et al.  Hydrogen storage in sonicated carbon materials , 2001 .

[73]  Plamen Atanassov,et al.  Hydrogen adsorption properties of platinum decorated hierarchically structured templated carbons , 2013 .

[74]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[75]  M. Hirscher,et al.  Metal hydride materials for solid hydrogen storage: a review , 2007 .

[76]  M. Kendall,et al.  The Logic of Scientific Discovery. , 1959 .

[77]  Yoav Benjamini,et al.  Deciding whether follow-up studies have replicated findings in a preliminary large-scale omics study , 2013, Proceedings of the National Academy of Sciences.

[78]  Gary G. Tibbetts,et al.  Thermogravimetric Measurement of Hydrogen Absorption in Alkali-Modified Carbon Materials , 2000 .

[79]  Michael A. Miller,et al.  Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks , 2007 .

[80]  Michael Hirscher,et al.  Hydrogen Physisorption in Metal–Organic Porous Crystals , 2005 .

[81]  Andreas Möller,et al.  Assessment of hydrogen storage by physisorption in porous materials , 2012 .

[82]  K. Thomas,et al.  Gas adsorption by nanoporous materials: Future applications and experimental challenges , 2013 .

[83]  Stefan Kaskel,et al.  KOH activation of carbon-based materials for energy storage , 2012 .

[84]  S. Shapin,et al.  Leviathan and the Air-Pump: Hobbes, Boyle, and the Experimental Life , 1987 .

[85]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[86]  E. MacA. Gray,et al.  The effect of inaccurate volume calibrations on hydrogen uptake measured by the Sieverts method , 2014 .

[87]  Angela D. Lueking,et al.  Hydrogen Spillover from a Metal Oxide Catalyst onto Carbon Nanotubes—Implications for Hydrogen Storage , 2002 .

[88]  Ulrich Eberle,et al.  Chemical and physical solutions for hydrogen storage. , 2009, Angewandte Chemie.

[89]  Peter J. F. Harris,et al.  Carbon Nanotube Science: Frontmatter , 2009 .

[90]  J. Ioannidis,et al.  Reproducibility in Science: Improving the Standard for Basic and Preclinical Research , 2015, Circulation research.

[91]  Siegmar Roth,et al.  Hydrogen adsorption in different carbon nanostructures , 2005 .

[92]  Thomas Gennett,et al.  An international multi-laboratory investigation of carbon-based hydrogen sorbent materials , 2016 .

[93]  Randall Q Snurr,et al.  Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[94]  Torben R. Jensen,et al.  Review of magnesium hydride-based materials: development and optimisation , 2016 .

[95]  Andreas Züttel,et al.  Hydrogen storage in carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[96]  A. Chambers,et al.  Hydrogen Storage in Graphite Nanofibers , 1998 .

[97]  Claudia Weidenthaler,et al.  Pitfalls in the characterization of nanoporous and nanosized materials. , 2011, Nanoscale.

[98]  P. Moretto,et al.  A Round Robin characterisation of the hydrogen sorption properties of a carbon based material , 2009 .

[99]  Alexandr V. Talyzin,et al.  Comment to the “Response to “Hydrogen adsorption in Pt catalyst/MOF-5 materials”” by Li et al. [1] , 2011 .

[100]  K. Thomas,et al.  Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. , 2009, Dalton transactions.

[101]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[102]  Aicheng Chen,et al.  Palladium based nanomaterials for enhanced hydrogen spillover and storage , 2016 .

[103]  Michael J. Cafarella,et al.  Theoretical Limits of Hydrogen Storage in Metal–Organic Frameworks: Opportunities and Trade-Offs , 2013 .

[104]  R. Nuzzo How scientists fool themselves – and how they can stop , 2015, Nature.

[105]  A. Züttel,et al.  Complex hydrides for hydrogen storage. , 2007, Chemical reviews.

[106]  Michael Hirscher,et al.  Hydrogen spillover measurements of unbridged and bridged metal-organic frameworks--revisited. , 2010, Physical chemistry chemical physics : PCCP.

[107]  Brent Fultz,et al.  Measurements of hydrogen spillover in platinum doped superactivated carbon. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[108]  Alexandr V. Talyzin,et al.  Hydrogen adsorption in Pt catalyst/MOF-5 materials , 2010 .

[109]  D. P. Broom,et al.  The accuracy of hydrogen sorption measurements on potential storage materials , 2007 .

[110]  B. Jasny,et al.  Again, and Again, and Again … , 2011 .

[111]  Michael Hirscher,et al.  Low-temperature thermal-desorption mass spectroscopy applied to investigate the hydrogen adsorption on porous materials , 2007 .

[112]  D. Broom,et al.  Hydrogen Storage Materials , 2011 .

[113]  H. C. Foley,et al.  High pressure hydrogen adsorption apparatus: Design and error analysis , 2012 .

[114]  Eric F. Rietzschel,et al.  Surveillance Is Not the Answer, and Replication Is Not a Test: Comment on Kepes and McDaniel, “How Trustworthy Is the Scientific Literature in I–O Psychology?” , 2013, Industrial and Organizational Psychology.

[115]  Antonio B. Fuertes,et al.  Ultrahigh surface area polypyrrole-based carbons with superior performance for hydrogen storage , 2011 .

[116]  R. Peng Reproducible Research in Computational Science , 2011, Science.

[117]  William H. Starbuck,et al.  60th Anniversary Essay , 2016 .

[118]  Peter J. F. Harris,et al.  Carbon Nanotube Science: Synthesis, Properties and Applications , 2009 .

[119]  C. Begley,et al.  Drug development: Raise standards for preclinical cancer research , 2012, Nature.

[120]  Sang M. Lee,et al.  Nanoporous polypyrrole: preparation and hydrogen storage properties , 2014 .

[121]  Carlo Lamberti,et al.  The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. , 2007, Journal of the American Chemical Society.