Adaptive independence samplers
暂无分享,去创建一个
[1] A. Brix. Bayesian Data Analysis, 2nd edn , 2005 .
[2] A. Gelfand,et al. On Markov Chain Monte Carlo Acceleration , 1994 .
[3] L Tierney,et al. Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.
[4] Bin Yu,et al. Regeneration in Markov chain samplers , 1995 .
[5] D. Chauveau,et al. Improving Convergence of the Hastings–Metropolis Algorithm with an Adaptive Proposal , 2002 .
[6] G. Roberts,et al. Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .
[7] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[8] Anatoly Zhigljavsky,et al. Self-regenerative Markov chain Monte Carlo with adaptation , 2003 .
[9] Colin N. Dewey,et al. Initial sequencing and comparative analysis of the mouse genome. , 2002 .
[10] Cajo J. F. ter Braak,et al. A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..
[11] G. Warnes. The Normal Kernel Coupler: An Adaptive Markov Chain Monte Carlo Method for Efficiently Sampling From Multi-Modal Distributions , 2001 .
[12] Lars Holden,et al. Adaptive Chains , 1998 .
[13] R. A. Leibler,et al. On Information and Sufficiency , 1951 .
[14] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[15] A. Gelman,et al. Adaptively Scaling the Metropolis Algorithm Using Expected Squared Jumped Distance , 2007 .
[16] Dirk P. Kroese,et al. The Cross Entropy Method: A Unified Approach To Combinatorial Optimization, Monte-carlo Simulation (Information Science and Statistics) , 2004 .
[17] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[18] C. Andrieu,et al. On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.
[19] Jean-Michel Marin,et al. Convergence of Adaptive Sampling Schemes , 2004 .
[20] J. Q. Smith,et al. 1. Bayesian Statistics 4 , 1993 .
[21] Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome , 2002, Nature.
[22] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[23] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[24] Heikki Haario,et al. Componentwise adaptation for high dimensional MCMC , 2005, Comput. Stat..
[25] R. Douc,et al. Convergence of Adaptive Sampling Schemes , 2007, 0708.0711.
[26] Darryn Bryant,et al. A Generalized Markov Sampler , 2004 .
[27] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[28] J. Gåsemyr. On an adaptive version of the Metropolis-Hastings algorithm with independent proposal distribution , 2003 .
[29] Ronald L. Wasserstein,et al. Monte Carlo: Concepts, Algorithms, and Applications , 1997 .
[30] Dirk P. Kroese,et al. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning , 2004 .
[31] H. Akaike. A new look at the statistical model identification , 1974 .
[32] Heikki Haario,et al. Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..
[33] P. Andolfatto. Adaptive evolution of non-coding DNA in Drosophila , 2005, Nature.
[34] J. Rosenthal,et al. On adaptive Markov chain Monte Carlo algorithms , 2005 .
[35] Walter R. Gilks,et al. Adaptive Direction Sampling , 1994 .
[36] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[37] G. McLachlan,et al. The EM algorithm and extensions , 1996 .